コード例 #1
0
ファイル: q4_softmaxreg.py プロジェクト: KyleGoyette/cs224d
def sanity_check():
    """
    Run python q4_softmaxreg.py.
    """
    random.seed(314159)
    np.random.seed(265)

    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)

    _, wordVectors0, _ = load_saved_params()
    wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:])
    dimVectors = wordVectors.shape[1]

    dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
    dummy_features = np.zeros((10, dimVectors))
    dummy_labels = np.zeros((10,), dtype=np.int32)    
    for i in xrange(10):
        words, dummy_labels[i] = dataset.getRandomTrainSentence()
        dummy_features[i, :] = getSentenceFeature(tokens, wordVectors, words)
    print "==== Gradient check for softmax regression ===="
    gradcheck_naive(lambda weights: softmaxRegression(dummy_features,
        dummy_labels, weights, 1.0, nopredictions = True), dummy_weights)

    print "\n=== Results ==="
    print softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0)
コード例 #2
0
ファイル: q4_softmaxreg.py プロジェクト: kingtaurus/cs224d
def sanity_check():
    """
    Run python q4_softmaxreg.py.
    """
    random.seed(314159)
    np.random.seed(265)

    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)

    _, wordVectors0, _ = load_saved_params()
    N = wordVectors0.shape[0]//2
    #assert N == nWords
    wordVectors = (wordVectors0[:N,:] + wordVectors0[N:,:])
    dimVectors = wordVectors.shape[1]

    dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
    dummy_features = np.zeros((10, dimVectors))
    dummy_labels = np.zeros((10,), dtype=np.int32)    
    for i in range(10):
        words, dummy_labels[i] = dataset.getRandomTrainSentence()
        dummy_features[i, :] = getSentenceFeature(tokens, wordVectors, words)
    print("==== Gradient check for softmax regression ====")
    gradcheck_naive(lambda weights: softmaxRegression(dummy_features,
        dummy_labels, weights, 1.0, nopredictions = True), dummy_weights)

    print("\n=== Results ===")
    print(softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0))

    dummy_weights  = 0.1 * np.random.randn(40, 10) + 1.0
    dummy_features = np.random.randn(2000, 40)
    dummy_labels   = np.argmax(np.random.randn(2000, 10), axis=1)

    print(-np.log(0.1))#expected correct classification (random) = 1 in 10;
    #cost then becomes -np.log(0.1)
    print(softmaxRegression(dummy_features, dummy_labels, dummy_weights, 0.0)[0])

    dummy_weights  = 0.1 * np.random.randn(40, 80) + 1.0
    dummy_features = np.random.randn(2000, 40)
    dummy_labels   = np.argmax(np.random.randn(2000, 80), axis=1)

    print(-np.log(1./80))#expected correct classification (random) = 1 in 80;
    #cost then becomes -np.log(1./80)
    print(softmaxRegression(dummy_features, dummy_labels, dummy_weights, 0.0)[0])

    dummy_weights  = 0.1 * np.random.randn(40, 1000) + 1.0
    dummy_features = np.random.randn(40000, 40)
    dummy_labels   = np.argmax(np.random.randn(40000, 1000), axis=1)

    print(-np.log(1./1000))#expected correct classification (random) = 1 in 80;
    #cost then becomes -np.log(1./80)
    print(softmaxRegression(dummy_features, dummy_labels, dummy_weights, 0.0)[0])
    print(np.exp(-softmaxRegression(dummy_features, dummy_labels, dummy_weights, 0.0)[0]))
コード例 #3
0
def main(args):
    """ Train a model to do sentiment analyis"""

    # Load the dataset
    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)

    if args.yourvectors:
        _, wordVectors, _ = load_saved_params()
        wordVectors = np.concatenate(
            (wordVectors[:nWords, :], wordVectors[nWords:, :]), axis=1)
    elif args.pretrained:
        wordVectors = glove.loadWordVectors(tokens)
    dimVectors = wordVectors.shape[1]

    # Load the train set
    trainset = dataset.getTrainSentences()
    nTrain = len(trainset)
    trainFeatures = np.zeros((nTrain, dimVectors))
    trainLabels = np.zeros((nTrain, ), dtype=np.int32)
    for i in xrange(nTrain):
        words, trainLabels[i] = trainset[i]
        trainFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # Prepare dev set features
    devset = dataset.getDevSentences()
    nDev = len(devset)
    devFeatures = np.zeros((nDev, dimVectors))
    devLabels = np.zeros((nDev, ), dtype=np.int32)
    for i in xrange(nDev):
        words, devLabels[i] = devset[i]
        devFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # Prepare test set features
    testset = dataset.getTestSentences()
    nTest = len(testset)
    testFeatures = np.zeros((nTest, dimVectors))
    testLabels = np.zeros((nTest, ), dtype=np.int32)
    for i in xrange(nTest):
        words, testLabels[i] = testset[i]
        testFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # We will save our results from each run
    results = []
    regValues = getRegularizationValues()
    for reg in regValues:
        print "Training for reg=%f" % reg
        # Note: add a very small number to regularization to please the library
        clf = LogisticRegression(C=1.0 / (reg + 1e-12))
        clf.fit(trainFeatures, trainLabels)

        # Test on train set
        pred = clf.predict(trainFeatures)
        trainAccuracy = accuracy(trainLabels, pred)
        print "Train accuracy (%%): %f" % trainAccuracy

        # Test on dev set
        pred = clf.predict(devFeatures)
        devAccuracy = accuracy(devLabels, pred)
        print "Dev accuracy (%%): %f" % devAccuracy

        # Test on test set
        # Note: always running on test is poor style. Typically, you should
        # do this only after validation.
        pred = clf.predict(testFeatures)
        testAccuracy = accuracy(testLabels, pred)
        print "Test accuracy (%%): %f" % testAccuracy

        results.append({
            "reg": reg,
            "clf": clf,
            "train": trainAccuracy,
            "dev": devAccuracy,
            "test": testAccuracy
        })

    # Print the accuracies
    print ""
    print "=== Recap ==="
    print "Reg\t\tTrain\tDev\tTest"
    for result in results:
        print "%.2E\t%.3f\t%.3f\t%.3f" % (result["reg"], result["train"],
                                          result["dev"], result["test"])
    print ""

    bestResult = chooseBestModel(results)
    print "Best regularization value: %0.2E" % bestResult["reg"]
    print "Test accuracy (%%): %f" % bestResult["test"]

    # do some error analysis
    if args.pretrained:
        plotRegVsAccuracy(regValues, results, "q4_reg_v_acc.png")
        outputConfusionMatrix(devFeatures, devLabels, bestResult["clf"],
                              "q4_dev_conf.png")
        outputPredictions(devset, devFeatures, devLabels, bestResult["clf"],
                          "q4_dev_pred.txt")
コード例 #4
0
from q4_softmaxreg import softmaxRegression, getSentenceFeature, accuracy, softmax_wrapper

# Try different regularizations and pick the best!
# NOTE: fill in one more "your code here" below before running!
REGULARIZATION = np.logspace(-5,0.5,20)   # Assign a list of floats in the block below
### YOUR CODE HERE
REGULARIZATION = np.hstack([0, REGULARIZATION])
### END YOUR CODE

# Load the dataset
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)

# Load the word vectors we trained earlier 
_, wordVectors0, _ = load_saved_params()
wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:]
dimVectors = wordVectors.shape[1]

# Load the train set
trainset = dataset.getTrainSentences()
nTrain = len(trainset)
trainFeatures = np.zeros((nTrain, dimVectors))
trainLabels = np.zeros((nTrain,), dtype=np.int32)
for i in range(nTrain):
    words, trainLabels[i] = trainset[i]
    trainFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)

# Prepare dev set features
devset = dataset.getDevSentences()
nDev = len(devset)
コード例 #5
0
ファイル: q4_sentiment.py プロジェクト: h1bernate/cs224d
REGULARIZATION = None   # Assign a list of floats in the block below
### YOUR CODE HERE

#REGULARIZATION = 10 ** np.arange(-10.,1.,1)
# Look closer at these values before the model drops off
REGULARIZATION = 10 ** np.arange( -5, -3, .2)

### END YOUR CODE

# Load the dataset
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)

# Load the word vectors we trained earlier 
_, wordVectors0, _ = load_saved_params()
wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:])
dimVectors = wordVectors.shape[1]

# Load the train set
trainset = dataset.getTrainSentences()
nTrain = len(trainset)
trainFeatures = np.zeros((nTrain, dimVectors))
trainLabels = np.zeros((nTrain,), dtype=np.int32)
for i in xrange(nTrain):
    words, trainLabels[i] = trainset[i]
    trainFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)

# Prepare dev set features
devset = dataset.getDevSentences()
nDev = len(devset)
コード例 #6
0
def sanity_check():
    """
    Run python q4_softmaxreg.py.
    """
    random.seed(314159)
    np.random.seed(265)

    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)

    _, wordVectors0, _ = load_saved_params()
    N = wordVectors0.shape[0] // 2
    #assert N == nWords
    wordVectors = (wordVectors0[:N, :] + wordVectors0[N:, :])
    dimVectors = wordVectors.shape[1]

    dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
    dummy_features = np.zeros((10, dimVectors))
    dummy_labels = np.zeros((10, ), dtype=np.int32)
    for i in range(10):
        words, dummy_labels[i] = dataset.getRandomTrainSentence()
        dummy_features[i, :] = getSentenceFeature(tokens, wordVectors, words)
    print("==== Gradient check for softmax regression ====")
    gradcheck_naive(
        lambda weights: softmaxRegression(
            dummy_features, dummy_labels, weights, 1.0, nopredictions=True),
        dummy_weights)

    print("\n=== Results ===")
    print(softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0))

    dummy_weights = 0.1 * np.random.randn(40, 10) + 1.0
    dummy_features = np.random.randn(2000, 40)
    dummy_labels = np.argmax(np.random.randn(2000, 10), axis=1)

    print(-np.log(0.1))  #expected correct classification (random) = 1 in 10;
    #cost then becomes -np.log(0.1)
    print(
        softmaxRegression(dummy_features, dummy_labels, dummy_weights, 0.0)[0])

    dummy_weights = 0.1 * np.random.randn(40, 80) + 1.0
    dummy_features = np.random.randn(2000, 40)
    dummy_labels = np.argmax(np.random.randn(2000, 80), axis=1)

    print(
        -np.log(1. / 80))  #expected correct classification (random) = 1 in 80;
    #cost then becomes -np.log(1./80)
    print(
        softmaxRegression(dummy_features, dummy_labels, dummy_weights, 0.0)[0])

    dummy_weights = 0.1 * np.random.randn(40, 1000) + 1.0
    dummy_features = np.random.randn(40000, 40)
    dummy_labels = np.argmax(np.random.randn(40000, 1000), axis=1)

    print(-np.log(
        1. / 1000))  #expected correct classification (random) = 1 in 80;
    #cost then becomes -np.log(1./80)
    print(
        softmaxRegression(dummy_features, dummy_labels, dummy_weights, 0.0)[0])
    print(
        np.exp(-softmaxRegression(dummy_features, dummy_labels, dummy_weights,
                                  0.0)[0]))
コード例 #7
0
def main(args):
    """ Train a model to do sentiment analyis"""

    # Load the dataset
    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)

    if args.yourvectors:
        _, wordVectors, _ = load_saved_params()
        wordVectors = np.concatenate(
            (wordVectors[:nWords,:], wordVectors[nWords:,:]),
            axis=1)
    elif args.pretrained:
        wordVectors = glove.loadWordVectors(tokens)
    dimVectors = wordVectors.shape[1]

    # Load the train set
    trainset = dataset.getTrainSentences()
    nTrain = len(trainset)
    trainFeatures = np.zeros((nTrain, dimVectors))
    trainLabels = np.zeros((nTrain,), dtype=np.int32)
    for i in xrange(nTrain):
        words, trainLabels[i] = trainset[i]
        trainFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # Prepare dev set features
    devset = dataset.getDevSentences()
    nDev = len(devset)
    devFeatures = np.zeros((nDev, dimVectors))
    devLabels = np.zeros((nDev,), dtype=np.int32)
    for i in xrange(nDev):
        words, devLabels[i] = devset[i]
        devFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # Prepare test set features
    testset = dataset.getTestSentences()
    nTest = len(testset)
    testFeatures = np.zeros((nTest, dimVectors))
    testLabels = np.zeros((nTest,), dtype=np.int32)
    for i in xrange(nTest):
        words, testLabels[i] = testset[i]
        testFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # We will save our results from each run
    results = []
    regValues = getRegularizationValues()
    for reg in regValues:
        print "Training for reg=%f" % reg
        # Note: add a very small number to regularization to please the library
        clf = LogisticRegression(C=1.0/(reg + 1e-12))
        clf.fit(trainFeatures, trainLabels)

        # Test on train set
        pred = clf.predict(trainFeatures)
        trainAccuracy = accuracy(trainLabels, pred)
        print "Train accuracy (%%): %f" % trainAccuracy

        # Test on dev set
        pred = clf.predict(devFeatures)
        devAccuracy = accuracy(devLabels, pred)
        print "Dev accuracy (%%): %f" % devAccuracy

        # Test on test set
        # Note: always running on test is poor style. Typically, you should
        # do this only after validation.
        pred = clf.predict(testFeatures)
        testAccuracy = accuracy(testLabels, pred)
        print "Test accuracy (%%): %f" % testAccuracy

        results.append({
            "reg": reg,
            "clf": clf,
            "train": trainAccuracy,
            "dev": devAccuracy,
            "test": testAccuracy})

    # Print the accuracies
    print ""
    print "=== Recap ==="
    print "Reg\t\tTrain\tDev\tTest"
    for result in results:
        print "%.2E\t%.3f\t%.3f\t%.3f" % (
            result["reg"],
            result["train"],
            result["dev"],
            result["test"])
    print ""

    bestResult = chooseBestModel(results)
    print "Best regularization value: %0.2E" % bestResult["reg"]
    print "Test accuracy (%%): %f" % bestResult["test"]

    # do some error analysis
    if args.pretrained:
        plotRegVsAccuracy(regValues, results, "q4_reg_v_acc.png")
        outputConfusionMatrix(devFeatures, devLabels, bestResult["clf"],
                              "q4_dev_conf.png")
        outputPredictions(devset, devFeatures, devLabels, bestResult["clf"],
                          "q4_dev_pred.txt")
    else:
        # plotRegVsAccuracy(regValues, results, "q4_reg_v_acc_your.png")
        outputConfusionMatrix(devFeatures, devLabels, bestResult["clf"],
                              "q4_dev_conf_your.png")
コード例 #8
0
def main(args):
    """ Train a model to do sentiment analyis"""
    dataset, tokens, maxSentence = getToxicData()
    print len(dataset)
    # Shuffle data
    shuffle(dataset)

    num_data = len(dataset)

    # Create train, dev, and test
    train_cutoff = int(0.6 * num_data)
    dev_start = int(0.6 * num_data) + 1
    dev_cutoff = int(0.8 * num_data)

    trainset = dataset[:train_cutoff]
    devset = dataset[dev_start:dev_cutoff]
    testset = dataset[dev_cutoff + 1:]

    nWords = len(tokens)

    if args.yourvectors:
        _, wordVectors, _ = load_saved_params()
        wordVectors = np.concatenate(
            (wordVectors[:nWords, :], wordVectors[nWords:, :]), axis=1)
    elif args.pretrained:
        wordVectors = glove.loadWordVectors(tokens)
    dimVectors = wordVectors.shape[1]

    # Load the train set
    #trainset = dataset.getTrainSentences()
    nTrain = len(trainset)
    trainFeatures = np.zeros((nTrain, dimVectors))
    trainLabels = np.zeros((nTrain, ), dtype=np.int32)

    for i in xrange(nTrain):
        words, trainLabels[i] = trainset[i]
        trainFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # Prepare dev set features
    #devset = dataset.getDevSentences()
    nDev = len(devset)
    devFeatures = np.zeros((nDev, dimVectors))
    devLabels = np.zeros((nDev, ), dtype=np.int32)
    for i in xrange(nDev):
        words, devLabels[i] = devset[i]
        devFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # Prepare test set features
    #testset = dataset.getTestSentences()
    nTest = len(testset)
    testFeatures = np.zeros((nTest, dimVectors))
    testLabels = np.zeros((nTest, ), dtype=np.int32)
    for i in xrange(nTest):
        words, testLabels[i] = testset[i]
        testFeatures[i, :] = getSentenceFeatures(tokens, wordVectors, words)

    # We will save our results from each run
    results = []
    regValues = getRegularizationValues()
    print "SVM Results:"

    clf = SVC()
    clf.fit(trainFeatures, trainLabels)

    # Test on train set
    pred = clf.predict(trainFeatures)
    trainAccuracy = accuracy(trainLabels, pred)
    print "Train accuracy (%%): %f" % trainAccuracy

    # Test on dev set
    pred = clf.predict(devFeatures)
    devAccuracy = accuracy(devLabels, pred)
    print "Dev accuracy (%%): %f" % devAccuracy

    # Test on test set
    # Note: always running on test is poor style. Typically, you should
    # do this only after validation.
    pred = clf.predict(testFeatures)
    testAccuracy = accuracy(testLabels, pred)
    print "Test accuracy (%%): %f" % testAccuracy

    results.append({
        "reg": 0.0,
        "clf": clf,
        "train": trainAccuracy,
        "dev": devAccuracy,
        "test": testAccuracy
    })

    # Print the accuracies
    print ""
    print "=== Recap ==="
    print "Reg\t\tTrain\tDev\tTest"
    for result in results:
        print "%.2E\t%.3f\t%.3f\t%.3f" % (result["reg"], result["train"],
                                          result["dev"], result["test"])
    print ""

    bestResult = chooseBestModel(results)
    # print "Best regularization value: %0.2E" % bestResult["reg"]
    # print "Test accuracy (%%): %f" % bestResult["test"]

    # do some error analysis
    if args.pretrained:
        plotRegVsAccuracy(regValues, results, "q4_reg_v_acc.png")
        outputConfusionMatrix(devFeatures, devLabels, bestResult["clf"],
                              "q4_dev_svm_conf.png")
        outputPredictions(devset, devFeatures, devLabels, bestResult["clf"],
                          "q4_dev_svm_pred.txt")
コード例 #9
0
def main(args):
    """ Train a model to do sentiment analyis"""

    # Load the dataset
    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)

    
    if args.yourvectors:
        _, wordVectors, _ = load_saved_params()
        wordVectors = np.concatenate(
            (wordVectors[:nWords,:], wordVectors[nWords:,:]),
            axis=1)
    elif args.pretrained:
        wordVectors = glove.loadWordVectors(tokens)

    dimVectors = wordVectors.shape[1]

    # Load the train set
    trainset = dataset.getTrainSentences()
    nTrain = len(trainset)
    trainFeatures = np.zeros((nTrain, dimVectors))
    trainLabels = np.zeros((nTrain,), dtype=np.int32)
    
    #frequency counting
    freq = Counter()
    Sum = 0
    for sen in trainset:
        for word in sen[0]:
            Sum += 1
            freq[word]+=1
    for word,tf in freq.items():
        freq[word] = tf/Sum
    
    #generate all sentence features
    for i in range(nTrain):
        words, trainLabels[i] = trainset[i]
        trainFeatures[i, :] = getSentenceFeaturesSIF(tokens, wordVectors, words, freq)
    #svd in training set
    svd = TruncatedSVD(n_components=1, n_iter=5, random_state=0)
    u = svd.fit(trainFeatures).components_[0] # the first singular vector
    # remove the projections of the sentence embeddings to their first principal component
    for i in range(trainFeatures.shape[0]):
        trainFeatures[i] = trainFeatures[i] - np.dot(trainFeatures[i],u.T) * u
    
    # Prepare dev set features
    devset = dataset.getDevSentences()
    nDev = len(devset)
    devFeatures = np.zeros((nDev, dimVectors))
    devLabels = np.zeros((nDev,), dtype=np.int32)
    for i in range(nDev):
        words, devLabels[i] = devset[i]
        devFeatures[i, :] = getSentenceFeaturesSIF(tokens, wordVectors, words, freq) 
    for i in range(devFeatures.shape[0]):
            devFeatures[i] = devFeatures[i] - np.dot(devFeatures[i],u.T) * u
            
    # Prepare test set features
    testset = dataset.getTestSentences()
    nTest = len(testset)
    testFeatures = np.zeros((nTest, dimVectors))
    testLabels = np.zeros((nTest,), dtype=np.int32)
    for i in range(nTest):
        words, testLabels[i] = testset[i]
        testFeatures[i, :] = getSentenceFeaturesSIF(tokens, wordVectors, words, freq)
    for i in range(testFeatures.shape[0]):
            testFeatures[i] = testFeatures[i] - np.dot(testFeatures[i],u.T) * u
            
    # We will save our results from each run
    results = []
    regValues = getRegularizationValues()
    for reg in regValues:
        print("Training for reg=%f" % reg)
        # Note: add a very small number to regularization to please the library
        clf = LogisticRegression(C=1.0/(reg + 1e-12))
        clf.fit(trainFeatures, trainLabels)

        # Test on train set
        pred = clf.predict(trainFeatures)
        trainAccuracy = accuracy(trainLabels, pred)
        print("Train accuracy (%%): %f" % trainAccuracy)

        # Test on dev set
        pred = clf.predict(devFeatures)
        devAccuracy = accuracy(devLabels, pred)
        print("Dev accuracy (%%): %f" % devAccuracy)

        # Test on test set
        # Note: always running on test is poor style. Typically, you should
        # do this only after validation.
        pred = clf.predict(testFeatures)
        testAccuracy = accuracy(testLabels, pred)
        print("Test accuracy (%%): %f" % testAccuracy)

        results.append({
            "reg": reg,
            "clf": clf,
            "train": trainAccuracy,
            "dev": devAccuracy,
            "test": testAccuracy})

    # Print the accuracies
    print ("")
    print ("=== Recap ===")
    print ("Reg\t\tTrain\tDev\tTest")
    for result in results:
        print ("%.2E\t%.3f\t%.3f\t%.3f" % (
            result["reg"],
            result["train"],
            result["dev"],
            result["test"]))
    print ("")

    bestResult = chooseBestModel(results)
    print ("Best regularization value: %0.2E" % bestResult["reg"])
    print ("Test accuracy (%%): %f" % bestResult["test"])
    
    # do some error analysis
    if args.pretrained:
        plotRegVsAccuracy(regValues, results, "q4_sif_reg_v_acc.png")
        outputConfusionMatrix(devFeatures, devLabels, bestResult["clf"],
                              "q4_sif_dev_conf.png")
        outputPredictions(devset, devFeatures, devLabels, bestResult["clf"],
                          "q4_sif_dev_pred.txt")