コード例 #1
0
def multi_doc_model_factory(config):
    if config['model_type'] == 'mock':
        return MockMRCModel()
    elif config['model_type'] == 'pipeline':
        name2cls = {'RankerReaderModel':RankerReaderModel,'SelectorReaderModel':SelectorReaderModel}
        _cls = name2cls[config['class']]
        if 'device' in config:
            import torch
            device = config['device']
            if device == 'cpu':
                device = torch.device('cpu')
            else:
                device =  get_default_device()
        
        run_time_kwargs = {}
        if 'ranker_config_path' in config:
            ranker = RankerFactory.from_config_path(config['ranker_config_path'])
            run_time_kwargs['ranker'] = ranker
            try:
                ranker.model = ranker.model.to(device)
            except:
                pass
        if 'reader_config_path' in config:
            reader = ReaderFactory.from_config_path(config['reader_config_path'])
            run_time_kwargs['reader'] = ReaderFactory.from_config_path(config['reader_config_path'])
            try:
                reader.model = reader.model.to(device)
            except:
                pass
        if 'selector' in config :
            run_time_kwargs['selector'] = ParagraphSelectorFactory.create_selector(config['selector'])
        kwargs = config['kwargs']
        kwargs.update(run_time_kwargs)
        
        return _cls(**kwargs)
コード例 #2
0
ファイル: eval.py プロジェクト: kumiko-oreyome/qa_mrc
def show_prediction_for_dureader(paths,
                                 outpath,
                                 reader_exp_name,
                                 para_selection_method,
                                 decoder_dict=None):
    print('show_prediction_for_dureader')
    loader = DureaderLoader(
        paths,
        para_selection_method,
        sample_fields=['question', 'answers', 'question_id', 'question_type'])
    sample_list = loader.sample_list
    reader = ReaderFactory.from_exp_name(reader_exp_name,
                                         decoder_dict=decoder_dict)
    _preds = reader.evaluate_on_records(sample_list, batch_size=128)
    _preds = group_dict_list(_preds, 'question_id')
    pred_answers = MaxAllJudger().judge(_preds)
    pred_answer_list = RecordGrouper.from_group_dict('question_id',
                                                     pred_answers).records
    print('bidaf evaluation')
    ranked_list_formatter = QARankedListFormater(pred_answer_list)
    formated_result = ranked_list_formatter.format_result()
    with open(outpath, 'w', encoding='utf-8') as f:
        f.write('experiment settings\n')
        f.write('reader_exp_name : %s\n' % (reader_exp_name))
        f.write('para_selection_method : %s\n' % (str(para_selection_method)))
        f.write('decoder : %s\n' % (str(decoder_dict)))
        f.write('##' * 20)
        f.write('Content:\n\n')
        f.write(formated_result)
コード例 #3
0
ファイル: eval.py プロジェクト: kumiko-oreyome/qa_mrc
def test_dureader_bert_rc(test_path,
                          reader_exp_name,
                          para_selection_method,
                          decoder_dict=None):
    print('test_dureader_bert_rc loading samples...')
    loader = DureaderLoader(
        test_path,
        para_selection_method,
        sample_fields=['question', 'answers', 'question_id', 'question_type'])
    sample_list = loader.sample_list
    reader = ReaderFactory.from_exp_name(reader_exp_name,
                                         decoder_dict=decoder_dict)
    _preds = reader.evaluate_on_records(sample_list, batch_size=128)
    _preds = group_dict_list(_preds, 'question_id')
    pred_answers = MaxAllJudger().judge(_preds)
    print('bidaf evaluation')
    evaluate_mrc_bidaf(pred_answers)
コード例 #4
0
ファイル: eval_batch.py プロジェクト: kumiko-oreyome/qa_mrc
def evaluate3(evaluate_files,
              bert_config_path,
              weight_path,
              metric_dir,
              eval_method='bidaf_script'):
    from common.util import group_dict_list
    print('load model')
    with torch.no_grad():
        reader = ReaderFactory.from_exp_name('reader/bert_default',
                                             READER_CLASS='bert_reader')
        #dataset = make_dataset(evaluate_files)
        #iterator = make_batch_iterator(dataset,bs=128)
        loader = DureaderLoader(evaluate_files,
                                'most_related_para',
                                sample_fields=[
                                    'question', 'answers', 'question_id',
                                    'question_type'
                                ])

        dataset = BertRCDataset(loader.sample_list,
                                args.max_query_length,
                                args.max_seq_length,
                                device=args.device)
        iterator = dataset.make_batchiter(batch_size=128)
        print('Iterate Batch')
        preds = reader.evaluate_on_batch(iterator)

        tmp = {}
        tmp = group_dict_list(preds, 'question_id')

        pred_result, ref_result = {}, {}
        # find max score predcition(dict) of qid

        for qid in tmp:
            l = tmp[qid]
            max_answer = max(l, key=lambda d: d['span_score'])
            max_answer.update({'entity_answers': [[]], 'yesno_answers': []})
            ref = {k: v for k, v in max_answer.items()}
            ref_result[qid] = ref
            #順序不能倒過來...

            max_answer['answers'] = [max_answer['span']]
            pred_result[qid] = max_answer

        mrc_eval.evaluate(pred_result, ref_result)
コード例 #5
0
ファイル: eval.py プロジェクト: kumiko-oreyome/qa_mrc
def show_prediction_for_demo_examples(reader_name,
                                      decoder_dict,
                                      test_path='./data/examples.txt',
                                      out_path='demo_mrc.txt'):
    samples = demo_files.read_from_demo_txt_file(test_path)
    reader = ReaderFactory.from_exp_name(reader_name,
                                         decoder_dict=decoder_dict)
    _preds = reader.evaluate_on_records(samples, batch_size=128)
    f = open(out_path, 'w', encoding='utf-8')
    for sample in _preds:
        print('Question', file=f)
        print(sample['question'], file=f)
        print('Passage', file=f)
        print('%s' % (sample['passage']), file=f)
        print('--' * 20, file=f)
        print('Answer:', file=f)
        print('%s' % (sample['span']), file=f)
        print('# # #' * 20, file=f)
コード例 #6
0
ファイル: test.py プロジェクト: kumiko-oreyome/qa_mrc
def test_mrc_baseline():
    print('test_dureader_bert_rc loading samples...')
    from dataloader.dureader import  DureaderLoader
    from qa.reader import ReaderFactory,BertRCDataset
    from qa.judger import MaxAllJudger
    from common.util import group_dict_list,evaluate_mrc_bidaf
    loader = DureaderLoader( ['./data/demo/devset/search.dev.2.json'],'most_related_para',sample_fields=['question','answers','question_id','question_type'])
    sample_list = loader.sample_list
    reader = ReaderFactory.from_exp_name('reader/bert_default',decoder_dict={'class':'default','kwargs':{'k':1}})
    reader_config = reader.config
    dataset  = BertRCDataset(sample_list,reader_config.MAX_QUERY_LEN,reader_config.MAX_SEQ_LEN,device=reader.device)
    print('make batch')
    iterator = dataset.make_batchiter(batch_size=128)
    _preds = reader.evaluate_on_batch(iterator)
    _preds = group_dict_list(_preds,'question_id')
    pred_answers  = MaxAllJudger().judge(_preds)
    res_dict = evaluate_mrc_bidaf(pred_answers)
    assert res_dict == {'Bleu-1': 0.19711538461443695, 'Bleu-2': 0.15154174071281326, 'Bleu-3': 0.11637351097094059, 'Bleu-4': 0.0983666932134996, 'Rouge-L': 0.260079879764384}
コード例 #7
0
ファイル: health_news.py プロジェクト: kumiko-oreyome/qa_mrc
    records = []
    for json_obj in jsonl_reader(path):
        question = json_obj['question']
        if len(question) == 0:
            continue
        for paragraph in json_obj['paragraphs']:
            records.append({'question': question, 'passage': paragraph})
    return records


if __name__ == '__main__':
    from qa.reader import ReaderFactory
    from qa.judger import MaxAllJudger
    from common.util import group_dict_list, RecordGrouper
    from qa.eval import QARankedListFormater
    reader_exp_name = 'reader/bert_default'
    sample_list = load_beta_file('./data/news2paragraph.jsonl')
    reader = ReaderFactory.from_exp_name(reader_exp_name)
    _preds = reader.evaluate_on_records(sample_list, batch_size=32)
    _preds = group_dict_list(_preds, 'question')
    pred_answers = MaxAllJudger().judge(_preds)
    pred_answer_list = RecordGrouper.from_group_dict('question',
                                                     pred_answers).records
    ranked_list_formatter = QARankedListFormater(pred_answer_list)
    formated_result = ranked_list_formatter.format_result()
    with open('news_beta.txt', 'w', encoding='utf-8') as f:
        f.write('experiment settings\n')
        f.write('reader_exp_name : %s\n' % (reader_exp_name))
        f.write('##' * 20)
        f.write('Content:\n\n')
        f.write(formated_result)
コード例 #8
0
ファイル: reinforce.py プロジェクト: BarryZM/qa_mrc
    print('preprocessing span for  train data')
    train_loader.sample_list = list(
        filter(lambda x: len(x['answers']) > 0 and len(x['answer_docs']) > 0,
               train_loader.sample_list))
    for sample in train_loader.sample_list:
        if sample["doc_id"] == sample['answer_docs'][0]:
            preprocessing_charspan(sample)
        else:
            sample['char_spans'] = [0, 0]
            del sample['answer_spans']
            del sample['segmented_paragraphs']
    print('load ranker')
    ranker = RankerFactory.from_exp_name(experiment.config.ranker_name,
                                         eval_flag=False)
    print('load reader')
    reader = ReaderFactory.from_exp_name(experiment.config.reader_name,
                                         eval_flag=False)
    tokenizer = Tokenizer()
    reader_optimizer = SGD(reader.model.parameters(), lr=0.00001, momentum=0.9)
    ranker_optimizer = SGD(ranker.model.parameters(), lr=0.00001, momentum=0.9)
    BATCH_SIZE = 12

    print('ranker performance before traning')
    ranker.model = ranker.model.eval()
    evaluate_dureader_ranker(DEV_PATH, ranker, BATCH_SIZE, print_detail=False)
    ranker.model = ranker.model.train()

    for epcoch in range(EPOCH):
        print('start of epoch %d' % (epcoch))
        reader_loss, ranker_loss, reward_tracer = MetricTracer(), MetricTracer(
        ), MetricTracer()
        print('start training loop')
コード例 #9
0
ファイル: eval_batch.py プロジェクト: kumiko-oreyome/qa_mrc
def evaluate2(evaluate_files,
              bert_config_path,
              weight_path,
              metric_dir,
              eval_method='bidaf_script'):
    print('load model')
    with torch.no_grad():
        model = ReaderFactory.from_exp_name('reader/bert_default',
                                            READER_CLASS='bert_reader').model
        model = model.eval()
        #dataset = make_dataset(evaluate_files)
        #iterator = make_batch_iterator(dataset,bs=128)
        loader = DureaderLoader(evaluate_files,
                                'most_related_para',
                                sample_fields=[
                                    'question', 'answers', 'question_id',
                                    'question_type'
                                ])

        dataset = BertRCDataset(loader.sample_list,
                                args.max_query_length,
                                args.max_seq_length,
                                device=args.device)
        iterator = dataset.make_batchiter(batch_size=128)
        print('Iterate Batch')
        preds = []
        for i, batch in enumerate(iterator):
            if i % 20 == 0:
                print('evaluate on %d batch' % (i))
            start_probs, end_probs = model(batch.input_ids,
                                           token_type_ids=batch.segment_ids,
                                           attention_mask=batch.input_mask)
            for i in range(len(start_probs)):
                sb, eb = start_probs[i].unsqueeze(0), end_probs[i].unsqueeze(0)
                span, score = find_best_span_from_probs(sb, eb)
                score = score.item()  #輸出的score不是機率 所以不會介於0~1之間
                answer = extact_answer_from_span(batch.question[i],
                                                 batch.passage[i], span)
                preds.append({
                    'question_id': batch.question_id[i],
                    'question': batch.question[i],
                    'question_type': batch.question_type[i],
                    'answers': [answer],
                    'entity_answers': [[]],
                    'yesno_answers': [],
                    'score': score,
                    'gold': batch.answers[i]
                })

        tmp = {}
        for pred in preds:
            qid = pred['question_id']
            if qid not in tmp:
                tmp[qid] = []
            tmp[qid].append(pred)

        pred_result, ref_result = {}, {}
        # find max score predcition(dict) of qid

        for qid in tmp:
            l = tmp[qid]
            max_answer = max(l, key=lambda d: d['score'])
            pred_result[qid] = max_answer

            ref = {k: v for k, v in max_answer.items()}
            ref['answers'] = max_answer['gold']
            ref_result[qid] = ref

        mrc_eval.evaluate(pred_result, ref_result)