コード例 #1
0
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), '../'))

from qaPairsRelationClassification.DSSM.model import DSSM
import tensorflow as tf
from qaPairsRelationClassification.utils.load_data import load_char_data

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

p, h, y = load_char_data('data/test.csv', data_size=None)

model = DSSM()
saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, '../output/dssm/dssm_49.ckpt')
    loss, acc = sess.run([model.loss, model.acc],
                         feed_dict={
                             model.p: p,
                             model.h: h,
                             model.y: y,
                             model.keep_prob: 1
                         })

    print('loss: ', loss, ' acc:', acc)
コード例 #2
0
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), '../'))

from qaPairsRelationClassification.ABCNN_V1.model import ABCNN
import tensorflow as tf
from qaPairsRelationClassification.utils.load_data import load_char_data

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

p, h, y = load_char_data('input/test.csv', data_size=None)

model = ABCNN(True, True)
saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, '../output/abcnn/abcnn_23.ckpt')
    loss, acc = sess.run([model.loss, model.acc],
                         feed_dict={
                             model.p: p,
                             model.h: h,
                             model.y: y,
                             model.keep_prob: 1
                         })

    print('loss: ', loss, ' acc:', acc)
コード例 #3
0
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), '../'))

from qaPairsRelationClassification.ABCNN_V1.model import ABCNN
import tensorflow as tf
from qaPairsRelationClassification.utils.load_data import load_char_data
from qaPairsRelationClassification.ABCNN_V1 import args

p, h, y = load_char_data('data/train.csv', data_size=None)
p_eval, h_eval, y_eval = load_char_data('data/dev.csv', data_size=1000)

p_holder = tf.placeholder(dtype=tf.int32,
                          shape=(None, args.seq_length),
                          name='p')
h_holder = tf.placeholder(dtype=tf.int32,
                          shape=(None, args.seq_length),
                          name='h')
y_holder = tf.placeholder(dtype=tf.int32, shape=None, name='y')

dataset = tf.data.Dataset.from_tensor_slices((p_holder, h_holder, y_holder))
dataset = dataset.batch(args.batch_size).repeat(args.epochs)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

# model = Graph(False, False)
model = ABCNN(True, True)
saver = tf.train.Saver()

config = tf.ConfigProto()
コード例 #4
0
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), '../'))

from qaPairsRelationClassification.CONVNET.model import CONVNET
import tensorflow as tf
from qaPairsRelationClassification.utils.load_data import load_char_data
from qaPairsRelationClassification.CONVNET import args

p, h, y = load_char_data('input/train.csv', data_size=None)
p_eval, h_eval, y_eval = load_char_data('input/dev.csv',
                                        data_size=args.batch_size)

p_holder = tf.placeholder(dtype=tf.int32,
                          shape=(None, args.seq_length),
                          name='p')
h_holder = tf.placeholder(dtype=tf.int32,
                          shape=(None, args.seq_length),
                          name='h')
y_holder = tf.placeholder(dtype=tf.int32, shape=None, name='y')

dataset = tf.data.Dataset.from_tensor_slices((p_holder, h_holder, y_holder))
dataset = dataset.batch(args.batch_size).repeat(args.epochs)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

model = CONVNET()
saver = tf.train.Saver()

config = tf.ConfigProto()