コード例 #1
0
def resample_dataset(dataset: DataSet,
                     sample_rate: Tuple[int],
                     copy_metadata: bool = False,
                     output_parameter_name: Optional[str] = None) -> DataSet:
    """ Given a dataset resample the measurement array

    Args:
        dataset: Dataset to be slice
        sample_rate: Tuple with for each axis the sample rate. Must be a postive integer
        copy_metadata: If True then copy the metadata of the input dataset
        output_parameter_name: Name of the output array
    Returns:
        Dataset with sliced data

    """
    zarray = dataset.default_parameter_array()
    if output_parameter_name is None:
        output_parameter_name = zarray.name

    slice_objects = tuple([
        slice(0, size, sample_rate[jj]) for jj, size in enumerate(zarray.shape)
    ])

    return _slice_dataset(dataset,
                          slice_objects,
                          output_parameter_name,
                          copy_metadata=copy_metadata,
                          verbose=0)
コード例 #2
0
def average_multirow_dataset(dataset: DataSet, number_of_repetitions: int, new_values=None,
                             parameter_name: str = 'signal', output_parameter_name: str = 'signal') -> DataSet:
    """ Calculate the averaged signal from a 2D dataset with repeated rows

    Args:
        dataset: Dataset containing the data to be averaged
        number_of_repetitions: Number of rows over which to average
        new_values: Optional new values for the averaged axis
        parameter_name: Name of data array to process
        output_parameter_name: Name of output array

    Returns:
        Averaged dataset
    """
    zarray = dataset.default_parameter_array(parameter_name)
    set_arrays = zarray.set_arrays
    xarray = set_arrays[1]
    yarray = set_arrays[0]

    if new_values is None:
        number_of_blocks = int(zarray.shape[0] / number_of_repetitions)
        new_values = np.linspace(yarray[0], yarray[-1], number_of_blocks)
    data = zarray
    ncolumns = data.shape[1]
    averaged_signal = data.transpose().reshape(-1, number_of_repetitions).mean(1).reshape(ncolumns, -1).transpose()

    dataset_averaged = qtt.data.makeDataSet2Dplain(xarray.name, xarray[0], yarray.name, new_values,
                                                   zname=output_parameter_name,
                                                   z=averaged_signal, xunit=xarray.unit, yunit=yarray.unit,
                                                   zunit=zarray.unit)

    return dataset_averaged
コード例 #3
0
def process_dataarray(
    dataset: DataSet,
    input_array_name: str,
    output_array_name: Optional[str],
    processing_function: Callable,
    label: Optional[str] = None,
    unit: Optional[str] = None,
) -> DataSet:
    """ Apply a function to a DataArray in a DataSet

    Args:
        dataset: Input dataset containing the data array
        input_array_name: Name of the data array to be processed
        output_array_nane: Name of the output array or None to operate in place
        processing_function: Method to apply to the data array
        label: Label for the output array
        unit: Unit for the output array
    """
    array = dataset.default_parameter_array(input_array_name)
    data = processing_function(np.array(array))
    if label is None:
        label = array.label
    if unit is None:
        unit = array.unit
    if output_array_name is None:
        array.ndarray[:] = data
    else:
        data_array = DataArray(array_id=output_array_name,
                               name=output_array_name,
                               label=label,
                               set_arrays=array.set_arrays,
                               preset_data=data,
                               unit=unit)
        dataset.add_array(data_array)
    return dataset
コード例 #4
0
def _slice_dataset(dataset: DataSet, slice_objects: Sequence[slice], output_parameter_name: Optional[str],
                   copy_metadata: bool, verbose: int = 0):
    """ Slice the measurement array of a dataset and adjust the setpoints arrays accordingly """
    zarray = dataset.default_parameter_array()
    if output_parameter_name is None:
        output_parameter_name = zarray.name

    set_arrays = zarray.set_arrays
    yarray = set_arrays[0]

    scan_dimension = dataset_dimension(dataset)
    is_1d_dataset = scan_dimension == 1
    is_2d_dataset = scan_dimension == 2

    if verbose:
        print(f'slice_dataset: dimension {scan_dimension} slice_objects {slice_objects}')

    if is_1d_dataset:
        signal_window = zarray[tuple(slice_objects)]
        dataset_window = qtt.data.makeDataSet1Dplain(yarray.name, yarray[slice_objects[0]], yname=output_parameter_name,
                                                     y=signal_window, xunit=yarray.unit, yunit=zarray.unit)
    elif is_2d_dataset:
        xarray = set_arrays[1]
        signal_window = zarray[tuple(slice_objects)]
        dataset_window = qtt.data.makeDataSet2Dplain(xarray.name, xarray[0][slice_objects[1]], yarray.name,
                                                     yarray[slice_objects[0]], zname=output_parameter_name,
                                                     z=signal_window, xunit=xarray.unit, yunit=yarray.unit,
                                                     zunit=zarray.unit)
    else:
        raise NotImplementedError('slicing a multi-dimensional dataset of dimension {scan_dimension} is not supported')

    if copy_metadata:
        dataset_window.metadata = copy.deepcopy(dataset.metadata)
    return dataset_window
コード例 #5
0
def plot_dataset(dataset: DataSet,
                 parameter_names: Optional[list] = None,
                 fig: Optional[int] = 1) -> None:
    """ Plot a dataset to matplotlib figure window

    Args:
        dataset: DataSet to be plotted
        parameter_names: List of arrays to be plotted
        fig: Specification if Matplotlib figure window

    """
    if parameter_names is None:
        parameter_names = [dataset.default_parameter_name()]

    if parameter_names == 'all':
        parameter_names = [
            name for name in dataset.arrays.keys()
            if not dataset.arrays[name].is_setpoint
        ]

    default_array = dataset.default_parameter_array()

    if fig:
        plt.figure(fig)
        plt.clf()

        if len(default_array.shape) >= 2:
            if len(parameter_names) > 1:
                arrays = [
                    dataset.default_parameter_array(parameter_name)
                    for parameter_name in parameter_names
                ]
                plot_handle = MatPlot(*arrays, num=fig)

            else:
                plot_handle = MatPlot(dataset.default_parameter_array(
                    parameter_names[0]),
                                      num=fig)
        else:
            for idx, parameter_name in enumerate(parameter_names):
                if idx == 0:
                    plot_handle = MatPlot(
                        dataset.default_parameter_array(parameter_name),
                        num=fig)
                else:
                    plot_handle.add(
                        dataset.default_parameter_array(parameter_name, ))
コード例 #6
0
def slice_dataset(dataset: DataSet, window: Sequence[float], axis: int = 0,
                  verbose: int = 0, copy_metadata: bool = False, output_parameter_name=None) -> DataSet:
    """ Given a dataset and a window for the horizontal axis return the dataset with selected window

    Args:
        dataset: Dataset to be slice
        window: Specification of the window to be selected
        axis: Axis used for slicing
        verbose: Verbosity level
        copy_metadata: If True then copy the metadata of the input dataset
        output_parameter_name: Name of the output array
    Returns:
        Dataset with sliced data

    """
    zarray = dataset.default_parameter_array()
    if output_parameter_name is None:
        output_parameter_name = zarray.name

    set_arrays = zarray.set_arrays
    yarray = set_arrays[0]
    scan_dimension = dataset_dimension(dataset)
    is_1d_dataset = scan_dimension == 1

    if is_1d_dataset:
        if not axis == 0:
            raise AssertionError('for a 1D dataset axis should be 0')
    else:
        xarray = set_arrays[1]

    slice_objects = [slice(0, size) for jj, size in enumerate(zarray.shape)]

    if axis == 0:
        slice_array = yarray
        start_idx = int(np.floor(np.interp(window[0], slice_array.ndarray, np.arange(slice_array.ndarray.size))))
        end_idx = int(np.interp(window[1], slice_array.ndarray, np.arange(slice_array.ndarray.size)))
        slice_objects[0] = slice(start_idx, end_idx)
    else:
        slice_array = xarray

        start_idx = int(np.floor(np.interp(window[0], slice_array.ndarray[0], np.arange(slice_array.ndarray[0].size))))
        end_idx = int(np.interp(window[1], slice_array.ndarray[0], np.arange(slice_array.ndarray[0].size)))

        slice_objects[1] = slice(start_idx, end_idx)

    return _slice_dataset(dataset, tuple(slice_objects), output_parameter_name, copy_metadata=copy_metadata, verbose=0)
コード例 #7
0
def analyse_RTS(dataset: DataSet, fig: int = 1) -> dict:
    time = default_setpoint_array(dataset)
    rtsdata = np.array(dataset.default_parameter_array())
    num_bins = 40
    counts, bins = np.histogram(rtsdata, bins=num_bins)
    bincentres = np.array([(bins[i] + bins[i + 1]) / 2
                           for i in range(0,
                                          len(bins) - 1)])
    par_fit, result_dict = fit_double_gaussian(bincentres, counts)
    split = result_dict['split']

    plt.figure(fig)
    plt.clf()
    plt.subplot(1, 2, 1)
    plt.plot(time[:10000], rtsdata[:10000], '.', label='signal')
    plt.xlabel('Time')
    plt.title('Selection of points')
    plt.subplot(1, 2, 2)
    _plot_rts_histogram(rtsdata, num_bins, par_fit, split, 'Histogram')
    return {}
コード例 #8
0
def analyse_polarization_line(dataset: DataSet,
                              fig: int = 1,
                              verbose=0) -> dict:
    """  Analyse dataset with polarization line """
    if verbose:
        print('analyse_polarization_line: dataset: %s' % dataset.location)
    signal = dataset.default_parameter_array()
    delta = default_setpoint_array(dataset, signal.name)

    lever_arm = 80
    delta_uev = np.array(delta) * lever_arm
    signal = qtt.algorithms.generic.smoothImage(signal)

    kb = scipy.constants.physical_constants['Boltzmann constant in eV/K'][
        0] * 1e6
    kT = 75e-3 * kb  # effective electron temperature in ueV

    par_fit, initial_parameters, results = fit_pol_all(delta_uev, signal, kT)
    plot_polarization_fit(delta_uev, signal, results, fig)
    return {}
コード例 #9
0
ファイル: plotting.py プロジェクト: jsaez8/nanoqtt
def plot_dataset(dataset: DataSet, scanjob, save=True) -> None:
    """ Plot a dataset to matplotlib figure window

    Args:
        dataset: DataSet to be plotted
        scanjob: scanjob of the measurement
        save: Select if you want to save the plots

    """

    parameter_names = [
        name for name in dataset.arrays.keys()
        if not dataset.arrays[name].is_setpoint
    ]
    default_array = dataset.default_parameter_array()

    # Path for saving
    base_loc = dataset.default_io.base_location
    folder = '\\' + dataset.location + '\\'
    label = str(scanjob.get('dataset_label'))
    path = base_loc + folder + label

    # 2D plots
    if len(default_array.shape) >= 2:
        for idx, parameter_name in enumerate(parameter_names):
            plot_handle = MatPlot(dataset.arrays[parameter_name], num=idx)
            plot_handle.rescale_axis()
            if save == True:
                plt.savefig(path + str(idx) + '.png')

    # 1D plots
    else:
        for idx, parameter_name in enumerate(parameter_names):
            plot_handle = MatPlot(dataset.arrays[parameter_name], num=idx)
            plot_handle.rescale_axis()
            if save == True:
                plt.savefig(path + str(idx) + '.png')
コード例 #10
0
def dataset_dimension(dataset: DataSet) -> int:
    """ Return dimension of DataSet """
    return len(dataset.default_parameter_array().set_arrays)
コード例 #11
0
def _parse_1d_dataset(dataset: DataSet) -> tuple:
    y_data = np.array(dataset.default_parameter_array())
    x_data = np.array(qtt.data.default_setpoint_array(dataset))
    return x_data, y_data