コード例 #1
0
def test_nest_3d(indep_params, dep_params):
    px, x, tablex = indep_params["x"]
    py, y, tabley = indep_params["y"]
    pz, z, tablez = indep_params["z"]

    def f(vx, vy, vz): return vx**2 + vy**2 + vz**2

    pi, i, tablei = dep_params["i"]
    pi.get = lambda: f(px(), py(), pz())

    sweep_values_x = [0, 1, 2]
    sweep_values_y = [5, 6, 7]
    sweep_values_z = [8, 9, 10]

    nest = Nest(
        Sweep(x, tablex, lambda: sweep_values_x),
        Sweep(y, tabley, lambda: sweep_values_y),
        Sweep(z, tablez, lambda: sweep_values_z),
        Measure(i, tablei)
    )

    meas = SweepMeasurement()
    meas.register_sweep(nest)

    interdeps = meas._interdeps
    assert interdeps.dependencies == {
        ParamSpecBase('i', 'numeric', '', ''): (ParamSpecBase('x', 'numeric', '', ''), ParamSpecBase('y', 'numeric', '', ''), ParamSpecBase('z', 'numeric', '', ''))}
    assert interdeps.inferences == {}
    assert interdeps.standalones == set()
コード例 #2
0
def test_add_data_array():
    exps = experiments()
    assert len(exps) == 1
    exp = exps[0]
    assert exp.name == "test-experiment"
    assert exp.sample_name == "test-sample"
    assert exp.last_counter == 0

    idps = InterDependencies_(
        standalones=(ParamSpecBase("x", "numeric"),
                     ParamSpecBase("y", "array")))
    mydataset = new_data_set("test")
    mydataset.set_interdependencies(idps)
    mydataset.mark_started()

    expected_x = []
    expected_y = []
    for x in range(100):
        expected_x.append([x])
        y = np.random.random_sample(10)
        expected_y.append([y])
        mydataset.add_result({"x": x, "y": y})

    shadow_ds = make_shadow_dataset(mydataset)

    assert mydataset.get_data('x') == expected_x
    assert shadow_ds.get_data('x') == expected_x

    y_data = mydataset.get_data('y')
    np.testing.assert_allclose(y_data, expected_y)
    y_data = shadow_ds.get_data('y')
    np.testing.assert_allclose(y_data, expected_y)
コード例 #3
0
def test_set_interdependencies(dataset):
    exps = experiments()
    assert len(exps) == 1
    exp = exps[0]
    assert exp.name == "test-experiment"
    assert exp.sample_name == "test-sample"
    assert exp.last_counter == 1

    parameter_a = ParamSpecBase("a_param", "NUMERIC")
    parameter_b = ParamSpecBase("b_param", "NUMERIC")
    parameter_c = ParamSpecBase("c_param", "array")

    idps = InterDependencies_(
        inferences={parameter_c: (parameter_a, parameter_b)})

    dataset.set_interdependencies(idps)

    # write the parameters to disk
    dataset.mark_started()

    # Now retrieve the paramspecs

    shadow_ds = make_shadow_dataset(dataset)

    paramspecs = shadow_ds.paramspecs

    expected_keys = ['a_param', 'b_param', 'c_param']
    keys = sorted(list(paramspecs.keys()))
    assert keys == expected_keys
    for expected_param_name in expected_keys:
        ps = paramspecs[expected_param_name]
        assert ps.name == expected_param_name

    assert paramspecs == dataset.paramspecs
コード例 #4
0
def standalone_parameters_dataset(dataset):
    n_params = 3
    n_rows = 10**3
    params_indep = [
        ParamSpecBase(f'param_{i}', 'numeric', label=f'param_{i}', unit='V')
        for i in range(n_params)
    ]

    param_dep = ParamSpecBase(f'param_{n_params}',
                              'numeric',
                              label=f'param_{n_params}',
                              unit='Ohm')

    params_all = params_indep + [param_dep]

    idps = InterDependencies_(
        dependencies={param_dep: tuple(params_indep[0:1])},
        standalones=tuple(params_indep[1:]))

    dataset.set_interdependencies(idps)

    dataset.mark_started()
    dataset.add_results([{
        p.name: np.int(n_rows * 10 * pn + i)
        for pn, p in enumerate(params_all)
    } for i in range(n_rows)])
    dataset.mark_completed()
    yield dataset
コード例 #5
0
def dataset_with_outliers_generator(ds,
                                    data_offset=5,
                                    low_outlier=-3,
                                    high_outlier=1,
                                    background_noise=True):
    x = ParamSpecBase('x', 'numeric', label='Flux', unit='e^2/hbar')
    t = ParamSpecBase('t', 'numeric', label='Time', unit='s')
    z = ParamSpecBase('z', 'numeric', label='Majorana number', unit='Anyon')

    idps = InterDependencies_(dependencies={z: (x, t)})
    ds.set_interdependencies(idps)
    ds.mark_started()

    npoints = 50
    xvals = np.linspace(0, 1, npoints)
    tvals = np.linspace(0, 1, npoints)
    for counter, xv in enumerate(xvals):
        if background_noise and (counter < round(npoints / 2.3)
                                 or counter > round(npoints / 1.8)):
            data = np.random.rand(npoints) - data_offset
        else:
            data = xv * np.linspace(0, 1, npoints)
        if counter == round(npoints / 1.9):
            data[round(npoints / 1.9)] = high_outlier
        if counter == round(npoints / 2.1):
            data[round(npoints / 2.5)] = low_outlier
        ds.add_results([{
            'x': xv,
            't': tv,
            'z': z
        } for z, tv in zip(data, tvals)])
    ds.mark_completed()
    return ds
コード例 #6
0
def test_adding_too_many_results():
    """
    This test really tests the "chunking" functionality of the
    insert_many_values function of the sqlite_base module
    """
    dataset = new_data_set("test_adding_too_many_results")
    xparam = ParamSpecBase("x", "numeric", label="x parameter",
                           unit='V')
    yparam = ParamSpecBase("y", 'numeric', label='y parameter',
                           unit='Hz')
    idps = InterDependencies_(dependencies={yparam: (xparam,)})
    dataset.set_interdependencies(idps)
    dataset.mark_started()
    n_max = qc.SQLiteSettings.limits['MAX_VARIABLE_NUMBER']

    vals = np.linspace(0, 1, int(n_max/2)+2)
    results = [{'x': val} for val in vals]
    dataset.add_results(results)

    vals = np.linspace(0, 1, int(n_max/2)+1)
    results = [{'x': val, 'y': val} for val in vals]
    dataset.add_results(results)

    vals = np.linspace(0, 1, n_max*3)
    results = [{'x': val} for val in vals]
    dataset.add_results(results)
コード例 #7
0
ファイル: test_dataset_loading.py プロジェクト: asqum/Qcodes
def test_get_data_by_id_order(dataset):
    """
    Test that the added values of setpoints end up associated with the correct
    setpoint parameter, irrespective of the ordering of those setpoint
    parameters
    """
    indepA = ParamSpecBase('indep1', "numeric")
    indepB = ParamSpecBase('indep2', "numeric")
    depAB = ParamSpecBase('depAB', "numeric")
    depBA = ParamSpecBase('depBA', "numeric")

    idps = InterDependencies_(
        dependencies={depAB: (indepA, indepB), depBA: (indepB, indepA)})

    dataset.set_interdependencies(idps)

    dataset.mark_started()

    dataset.add_result({'depAB': 12,
                        'indep2': 2,
                        'indep1': 1})

    dataset.add_result({'depBA': 21,
                        'indep2': 2,
                        'indep1': 1})
    dataset.mark_completed()

    data = get_data_by_id(dataset.run_id)
    data_dict = {el['name']: el['data'] for el in data[0]}
    assert data_dict['indep1'] == 1
    assert data_dict['indep2'] == 2

    data_dict = {el['name']: el['data'] for el in data[1]}
    assert data_dict['indep1'] == 1
    assert data_dict['indep2'] == 2
コード例 #8
0
def some_paramspecbases():

    psb1 = ParamSpecBase('psb1', paramtype='text', label='blah', unit='')
    psb2 = ParamSpecBase('psb2', paramtype='array', label='', unit='V')
    psb3 = ParamSpecBase('psb3', paramtype='array', label='', unit='V')
    psb4 = ParamSpecBase('psb4', paramtype='numeric', label='number', unit='')

    return (psb1, psb2, psb3, psb4)
コード例 #9
0
ファイル: test_datasaver.py プロジェクト: asqum/Qcodes
def test_saving_numeric_values_as_text(numeric_type):
    """
    Test the saving numeric values into 'text' parameter raises an exception
    """
    p = ParamSpecBase("p", "text")

    test_set = qc.new_data_set("test-dataset")
    test_set.set_interdependencies(InterDependencies_(standalones=(p, )))
    test_set.mark_started()

    idps = InterDependencies_(standalones=(p, ))

    data_saver = DataSaver(dataset=test_set, write_period=0, interdeps=idps)

    try:
        value = numeric_type(2)

        gottype = np.array(value).dtype

        msg = re.escape(f'Parameter {p.name} is of type '
                        f'"{p.type}", but got a result of '
                        f'type {gottype} ({value}).')
        with pytest.raises(ValueError, match=msg):
            data_saver.add_result((p.name, value))
    finally:
        data_saver.dataset.conn.close()
コード例 #10
0
ファイル: test_datasaver.py プロジェクト: asqum/Qcodes
def test_numpy_types():
    """
    Test that we can save numpy types in the data set
    """

    p = ParamSpecBase(name="p", paramtype="numeric")
    test_set = qc.new_data_set("test-dataset")
    test_set.set_interdependencies(InterDependencies_(standalones=(p, )))
    test_set.mark_started()

    idps = InterDependencies_(standalones=(p, ))

    data_saver = DataSaver(dataset=test_set, write_period=0, interdeps=idps)

    dtypes = [
        np.int8, np.int16, np.int32, np.int64, np.float16, np.float32,
        np.float64
    ]

    for dtype in dtypes:
        data_saver.add_result(("p", dtype(2)))

    data_saver.flush_data_to_database()
    data = test_set.get_data("p")
    assert data == [[2] for _ in range(len(dtypes))]
コード例 #11
0
ファイル: measurements.py プロジェクト: asqum/Qcodes
    def _register_parameter(self: T, name: str,
                            label: Optional[str],
                            unit: Optional[str],
                            setpoints: Optional[setpoints_type],
                            basis: Optional[setpoints_type],
                            paramtype: str) -> T:
        """
        Update the interdependencies object with a new group
        """

        parameter: Optional[ParamSpecBase]

        try:
            parameter = self._interdeps[name]
        except KeyError:
            parameter = None

        paramspec = ParamSpecBase(name=name,
                                  paramtype=paramtype,
                                  label=label,
                                  unit=unit)

        # We want to allow the registration of the exact same parameter twice,
        # the reason being that e.g. two ArrayParameters could share the same
        # setpoint parameter, which would then be registered along with each
        # dependent (array)parameter

        if parameter is not None and parameter != paramspec:
            raise ValueError("Parameter already registered "
                             "in this Measurement.")

        if setpoints is not None:
            sp_strings = [str(sp) for sp in setpoints]
        else:
            sp_strings = []

        if basis is not None:
            bs_strings = [str(bs) for bs in basis]
        else:
            bs_strings = []

        # get the ParamSpecBases
        depends_on, inf_from = self._paramspecbase_from_strings(name,
                                                                sp_strings,
                                                                bs_strings)

        if depends_on:
            self._interdeps = self._interdeps.extend(
                                  dependencies={paramspec: depends_on})
        if inf_from:
            self._interdeps = self._interdeps.extend(
                                  inferences={paramspec: inf_from})
        if not(depends_on or inf_from):
            self._interdeps = self._interdeps.extend(standalones=(paramspec,))

        log.info(f'Registered {name} in the Measurement.')

        return self
コード例 #12
0
class TestGetData:
    x = ParamSpecBase("x", paramtype='numeric')
    n_vals = 5
    xvals = list(range(n_vals))
    # this is the format of how data is returned by DataSet.get_data
    # which means "a list of table rows"
    xdata = [[x] for x in xvals]

    @pytest.fixture(autouse=True)
    def ds_with_vals(self, dataset):
        """
        This fixture creates a DataSet with values that is to be used by all
        the tests in this class
        """
        idps = InterDependencies_(standalones=(self.x,))
        dataset.set_interdependencies(idps)
        dataset.mark_started()
        for xv in self.xvals:
            dataset.add_result({self.x.name: xv})

        return dataset

    @pytest.mark.parametrize(
        ("start", "end", "expected"),
        [
            # test without start and end
            (None, None, xdata),

            # test for start only
            (0, None, xdata),
            (2, None, xdata[(2-1):]),
            (-2, None, xdata),
            (n_vals, None, xdata[(n_vals-1):]),
            (n_vals + 1, None, []),
            (n_vals + 2, None, []),

            # test for end only
            (None, 0, []),
            (None, 2, xdata[:2]),
            (None, -2, []),
            (None, n_vals, xdata),
            (None, n_vals + 1, xdata),
            (None, n_vals + 2, xdata),

            # test for start and end
            (0, 0, []),
            (1, 1, [xdata[1-1]]),
            (2, 1, []),
            (2, 0, []),
            (1, 0, []),
            (n_vals, n_vals, [xdata[n_vals-1]]),
            (n_vals, n_vals - 1, []),
            (2, 4, xdata[(2-1):4]),
        ],
    )
    def test_get_data_with_start_and_end_args(self, ds_with_vals,
                                              start, end, expected):
        assert expected == ds_with_vals.get_data(self.x, start=start, end=end)
コード例 #13
0
 def base_version(self) -> ParamSpecBase:
     """
     Return a ParamSpecBase object with the same name, paramtype, label
     and unit as this QcodesParamSpec
     """
     return ParamSpecBase(name=self.name,
                          paramtype=self.type,
                          label=self.label,
                          unit=self.unit)
コード例 #14
0
def test_missing_keys(dataset):
    """
    Test that we can now have partial results with keys missing. This is for
    example handy when having an interleaved 1D and 2D sweep.
    """

    x = ParamSpecBase("x", paramtype='numeric')
    y = ParamSpecBase("y", paramtype='numeric')
    a = ParamSpecBase("a", paramtype='numeric')
    b = ParamSpecBase("b", paramtype='numeric')

    idps = InterDependencies_(dependencies={a: (x,), b: (x, y)})
    dataset.set_interdependencies(idps)
    dataset.mark_started()

    def fa(xv):
        return xv + 1

    def fb(xv, yv):
        return xv + 2 - yv * 3

    results = []
    xvals = [1, 2, 3]
    yvals = [2, 3, 4]

    for xv in xvals:
        results.append({"x": xv, "a": fa(xv)})
        for yv in yvals:
            results.append({"x": xv, "y": yv, "b": fb(xv, yv)})

    dataset.add_results(results)

    assert dataset.get_values("x") == [[r["x"]] for r in results]
    assert dataset.get_values("y") == [[r["y"]] for r in results if "y" in r]
    assert dataset.get_values("a") == [[r["a"]] for r in results if "a" in r]
    assert dataset.get_values("b") == [[r["b"]] for r in results if "b" in r]

    assert dataset.get_setpoints("a")['x'] == [[xv] for xv in xvals]

    tmp = [list(t) for t in zip(*(itertools.product(xvals, yvals)))]
    expected_setpoints = [[[v] for v in vals] for vals in tmp]

    assert dataset.get_setpoints("b")['x'] == expected_setpoints[0]
    assert dataset.get_setpoints("b")['y'] == expected_setpoints[1]
コード例 #15
0
def test_add_data_1d():
    exps = experiments()
    assert len(exps) == 1
    exp = exps[0]
    assert exp.name == "test-experiment"
    assert exp.sample_name == "test-sample"
    assert exp.last_counter == 0

    psx = ParamSpecBase("x", "numeric")
    psy = ParamSpecBase("y", "numeric")

    idps = InterDependencies_(dependencies={psy: (psx,)})

    mydataset = new_data_set("test-dataset")
    mydataset.set_interdependencies(idps)
    mydataset.mark_started()

    expected_x = []
    expected_y = []
    for x in range(100):
        expected_x.append([x])
        y = 3 * x + 10
        expected_y.append([y])
        mydataset.add_result({"x": x, "y": y})

    shadow_ds = make_shadow_dataset(mydataset)

    assert mydataset.get_data('x') == expected_x
    assert mydataset.get_data('y') == expected_y
    assert shadow_ds.get_data('x') == expected_x
    assert shadow_ds.get_data('y') == expected_y

    with pytest.raises(ValueError):
        mydataset.add_result({'y': 500})

    assert mydataset.completed is False
    mydataset.mark_completed()
    assert mydataset.completed is True

    with pytest.raises(CompletedError):
        mydataset.add_result({'y': 500})

    with pytest.raises(CompletedError):
        mydataset.add_result({'x': 5})
コード例 #16
0
def test_numpy_nan(dataset):
    parameter_m = ParamSpecBase("m", "numeric")
    idps = InterDependencies_(standalones=(parameter_m,))
    dataset.set_interdependencies(idps)
    dataset.mark_started()

    data_dict = [{"m": value} for value in [0.0, np.nan, 1.0]]
    dataset.add_results(data_dict)
    retrieved = dataset.get_data("m")
    assert np.isnan(retrieved[1])
コード例 #17
0
def test_basic_subscription(dataset, basic_subscriber):
    xparam = ParamSpecBase(name='x',
                           paramtype='numeric',
                           label='x parameter',
                           unit='V')
    yparam = ParamSpecBase(name='y',
                           paramtype='numeric',
                           label='y parameter',
                           unit='Hz')
    idps = InterDependencies_(dependencies={yparam: (xparam,)})
    dataset.set_interdependencies(idps)
    dataset.mark_started()

    sub_id = dataset.subscribe(basic_subscriber, min_wait=0, min_count=1,
                               state={})

    assert len(dataset.subscribers) == 1
    assert list(dataset.subscribers.keys()) == [sub_id]

    expected_state = {}

    for x in range(10):
        y = -x**2
        dataset.add_result({'x': x, 'y': y})
        expected_state[x+1] = [(x, y)]

        @retry_until_does_not_throw(
            exception_class_to_expect=AssertionError, delay=0, tries=10)
        def assert_expected_state():
            assert dataset.subscribers[sub_id].state == expected_state

        assert_expected_state()

    dataset.unsubscribe(sub_id)

    assert len(dataset.subscribers) == 0
    assert list(dataset.subscribers.keys()) == []

    # Ensure the trigger for the subscriber has been removed from the database
    get_triggers_sql = "SELECT * FROM sqlite_master WHERE TYPE = 'trigger';"
    triggers = atomic_transaction(
        dataset.conn, get_triggers_sql).fetchall()
    assert len(triggers) == 0
コード例 #18
0
ファイル: test_paramspec.py プロジェクト: simonschaal/Qcodes
def test_base_version(paramspecs):

    kwargs = paramspecs[0]

    ps = ParamSpec(**kwargs)
    ps_base = ParamSpecBase(name=kwargs['name'],
                            paramtype=kwargs['paramtype'],
                            label=kwargs['label'],
                            unit=kwargs['unit'])

    assert ps.base_version() == ps_base
コード例 #19
0
def test_chain_simple(indep_params):
    px, x, tablex = indep_params["x"]
    py, y, tabley = indep_params["y"]

    sweep_values_x = [0, 1, 2]
    sweep_values_y = [4, 5, 6]

    parameter_sweep = Chain(
        Sweep(x, tablex, lambda: sweep_values_x),
        Sweep(y, tabley, lambda: sweep_values_y)
    )

    meas = SweepMeasurement()
    meas.register_sweep(parameter_sweep)

    interdeps = meas._interdeps
    assert interdeps.dependencies == {}
    assert interdeps.inferences == {}
    assert interdeps.standalones == {
        ParamSpecBase('y', 'numeric', '', ''), ParamSpecBase('x', 'numeric', '', '')}
コード例 #20
0
def test_interleave_1d_2d(indep_params, dep_params):
    px, x, tablex = indep_params["x"]
    py, y, tabley = indep_params["y"]

    pi, i, tablei = dep_params["i"]
    pj, j, tablej = dep_params["j"]

    def f(vx):
        return vx ** 2

    pi.get = lambda: f(px())

    def g(vx, vy):
        return vx ** 2 + vy ** 2

    pj.get = lambda: g(px(), py())

    sweep_values_x = [0, 1, 2]
    sweep_values_y = [4, 5, 6]

    sweep_object = Nest(
        Sweep(x, tablex, lambda: sweep_values_x),
        Chain(
            Measure(i, tablei),
            Nest(
                Sweep(y, tabley, lambda: sweep_values_y),
                Measure(j, tablej)
            )
        )
    )

    meas = SweepMeasurement()
    meas.register_sweep(sweep_object)

    interdeps = meas._interdeps
    assert interdeps.dependencies == {
        ParamSpecBase('i', 'numeric', '', ''): (ParamSpecBase('x', 'numeric', '', ''),),
        ParamSpecBase('j', 'numeric', '', ''): (ParamSpecBase('x', 'numeric', '', ''),
                                                ParamSpecBase('y', 'numeric', '', ''))}
    assert interdeps.inferences == {}
    assert interdeps.standalones == set()
コード例 #21
0
def test_numpy_inf(dataset):
    """
    Test that we can insert and retrieve numpy inf in the data set
    """
    parameter_m = ParamSpecBase("m", "numeric")
    idps = InterDependencies_(standalones=(parameter_m,))
    dataset.set_interdependencies(idps)
    dataset.mark_started()

    data_dict = [{"m": value} for value in [-np.inf, np.inf]]
    dataset.add_results(data_dict)
    retrieved = dataset.get_data("m")
    assert np.isinf(retrieved).all()
コード例 #22
0
def test_nest_in_chain_2_whatever(indep_params, dep_params):
    px, x, tablex = indep_params["x"]
    pi, i, tablei = dep_params["i"]
    pj, j, tablej = dep_params["j"]

    sweep_values = [0, 1, 2]

    sweep_object = Nest(
        Sweep(x, tablex, lambda: sweep_values),
        Chain(
            Measure(i, tablei)
        )
    )

    meas = SweepMeasurement()
    meas.register_sweep(sweep_object)

    interdeps = meas._interdeps
    assert interdeps.dependencies == {
        ParamSpecBase('i', 'numeric', '', ''): (ParamSpecBase('x', 'numeric', '', ''),)}
    assert interdeps.inferences == {}
    assert interdeps.standalones == set()
コード例 #23
0
def test_nest(indep_params, dep_params):
    px, x, tablex = indep_params["x"]
    pi, i, tablei = dep_params["i"]

    def f(value): return value**2

    pi.get = lambda: f(px())

    sweep_values = [0, 1, 2]

    nest = Nest(
        Sweep(x, tablex, lambda: sweep_values),
        Measure(i, tablei)
    )

    meas = SweepMeasurement()
    meas.register_sweep(nest)

    interdeps = meas._interdeps
    assert interdeps.dependencies == {
        ParamSpecBase('i', 'numeric', '', ''): (ParamSpecBase('x', 'numeric', '', ''),)}
    assert interdeps.inferences == {}
    assert interdeps.standalones == set()
コード例 #24
0
def test_sweep_parameter(indep_params):

    px, x, table = indep_params["x"]

    sweep_values = [0, 1, 2]
    parameter_sweep = Sweep(x, table, lambda: sweep_values)

    meas = SweepMeasurement()
    meas.register_sweep(parameter_sweep)

    interdeps = meas._interdeps
    assert interdeps.dependencies == {}
    assert interdeps.inferences == {}
    assert interdeps.standalones == {ParamSpecBase('x', 'numeric', '', '')}
コード例 #25
0
def test_numpy_floats(dataset):
    """
    Test that we can insert numpy floats in the data set
    """
    float_param = ParamSpecBase('y', 'numeric')
    idps = InterDependencies_(standalones=(float_param,))
    dataset.set_interdependencies(idps)
    dataset.mark_started()

    numpy_floats = [np.float, np.float16, np.float32, np.float64]
    results = [{"y": tp(1.2)} for tp in numpy_floats]
    dataset.add_results(results)
    expected_result = [[tp(1.2)] for tp in numpy_floats]
    assert np.allclose(dataset.get_data("y"), expected_result, atol=1E-8)
コード例 #26
0
def scalar_dataset_with_nulls(dataset):
    """
    A very simple dataset. A scalar is varied, and two parameters are measured
    one by one
    """
    sp = ParamSpecBase('setpoint', 'numeric')
    val1 = ParamSpecBase('first_value', 'numeric')
    val2 = ParamSpecBase('second_value', 'numeric')

    idps = InterDependencies_(dependencies={val1: (sp, ), val2: (sp, )})
    dataset.set_interdependencies(idps)

    dataset.mark_started()

    dataset.add_results([{
        sp.name: 0,
        val1.name: 1
    }, {
        sp.name: 0,
        val2.name: 2
    }])
    dataset.mark_completed()
    yield dataset
コード例 #27
0
def test_string_via_dataset(experiment):
    """
    Test that we can save text into database via DataSet API
    """
    p = ParamSpecBase("p", "text")

    test_set = qc.new_data_set("test-dataset")
    idps = InterDependencies_(standalones=(p, ))
    test_set.set_interdependencies(idps)
    test_set.mark_started()

    test_set.add_result({"p": "some text"})

    test_set.mark_completed()

    assert test_set.get_data("p") == [["some text"]]
コード例 #28
0
def test_numpy_ints(dataset):
    """
     Test that we can insert numpy integers in the data set
    """
    xparam = ParamSpecBase('x', 'numeric')
    idps = InterDependencies_(standalones=(xparam,))
    dataset.set_interdependencies(idps)
    dataset.mark_started()

    numpy_ints = [
        np.int, np.int8, np.int16, np.int32, np.int64,
        np.uint, np.uint8, np.uint16, np.uint32, np.uint64
    ]

    results = [{"x": tp(1)} for tp in numpy_ints]
    dataset.add_results(results)
    expected_result = len(numpy_ints) * [[1]]
    assert dataset.get_data("x") == expected_result
コード例 #29
0
def test_string_via_datasaver(experiment):
    """
    Test that we can save text into database via DataSaver API
    """
    p = ParamSpecBase(name="p", paramtype="text")

    test_set = qc.new_data_set("test-dataset")
    idps = InterDependencies_(standalones=(p, ))
    test_set.set_interdependencies(idps)
    test_set.mark_started()

    idps = InterDependencies_(standalones=(p, ))

    data_saver = DataSaver(dataset=test_set, write_period=0, interdeps=idps)

    data_saver.add_result(("p", "some text"))
    data_saver.flush_data_to_database()

    assert test_set.get_data("p") == [["some text"]]
コード例 #30
0
def test_validate_subset(some_paramspecbases):

    ps1, ps2, ps3, ps4 = some_paramspecbases

    idps = InterDependencies_(dependencies={ps1: (ps2, ps3)},
                              inferences={
                                  ps2: (ps4, ),
                                  ps3: (ps4, )
                              })

    idps.validate_subset((ps4, ))
    idps.validate_subset((ps2, ps4))
    idps.validate_subset((ps2, ps3, ps4))
    idps.validate_subset(())
    idps.validate_subset([])

    with pytest.raises(DependencyError) as exc_info:
        idps.validate_subset((ps1, ))
    assert exc_info.value._param_name == 'psb1'
    assert exc_info.value._missing_params == {'psb2', 'psb3'}

    with pytest.raises(DependencyError) as exc_info:
        idps.validate_subset((ps1, ps2, ps4))
    assert exc_info.value._param_name == 'psb1'
    assert exc_info.value._missing_params == {'psb3'}

    with pytest.raises(InferenceError) as exc_info:
        idps.validate_subset((ps3, ))
    assert exc_info.value._param_name == 'psb3'
    assert exc_info.value._missing_params == {'psb4'}

    with pytest.raises(InferenceError) as exc_info:
        idps2 = InterDependencies_(dependencies={ps1: (ps2, ps3)},
                                   inferences={ps3: (ps4, )})
        idps2.validate_subset((ps1, ps2, ps3))
    assert exc_info.value._param_name == 'psb3'
    assert exc_info.value._missing_params == {'psb4'}

    with pytest.raises(ValueError, match='ps42'):
        ps42 = ParamSpecBase('ps42', paramtype='text', label='', unit='it')
        idps.validate_subset((ps2, ps42, ps4))