for fb_noext, fig in zip(ffiles, figs): for ext in FIGS_EXTENSIONS: if ext == 'pdf': pass fig.savefig(pp, format='pdf') else: if mode == 'infer': noext = fb_noext + '-infer' else: noext = fb_noext + '-train' fig.savefig( fname=os.path.join(dirs['figures'], noext + "." + ext), transparent=TRANSPARENT, ) pass if pp: pp.close() if 'show' in FIGS_SAVESHOW: plt.show() #FIGS_ESXTENSIONS qsf.evaluateAllResults(result_files=files['result'], absolute_disparity=ABSOLUTE_DISPARITY, cluster_radius=CLUSTER_RADIUS) print("All done") exit(0)
if TEST_TITLES is None: TEST_TITLES = qsf.defaultTestTitles(files) partials = None partials = qsf.concentricSquares(CLUSTER_RADIUS) PARTIALS_WEIGHTS = [ 1.0 * pw / sum(PARTIALS_WEIGHTS) for pw in PARTIALS_WEIGHTS ] if not USE_PARTIALS: partials = partials[0:1] PARTIALS_WEIGHTS = [1.0] qsf.evaluateAllResults(result_files=files['result'], absolute_disparity=ABSOLUTE_DISPARITY, cluster_radius=CLUSTER_RADIUS, labels=SLICE_LABELS, logpath=LOGPATH) image_data = qsf.initImageData(files=files, max_imgs=MAX_IMGS_IN_MEM, cluster_radius=CLUSTER_RADIUS, tile_layers=TILE_LAYERS, tile_side=TILE_SIDE, width=IMG_WIDTH, replace_nans=True) corr2d_len, target_disparity_len, _ = qsf.get_lengths(CLUSTER_RADIUS, TILE_LAYERS, TILE_SIDE) train_next, dataset_train, datasets_test = qsf.initTrainTestData(