def test_load(self): print("test_load") corpus = globoquotes.load(GLOBOQUOTES_FILE) #print("len corpus: ", len(corpus)) #print("len 0: ", len(corpus[0])) #print("corpus[0]", len(corpus[0]), " corpus[0][0]=", len(corpus[0][0])) #[print(x) for x in corpus[0]] self.assertTrue(len(corpus) == 551 and len(corpus[0]) == 774)
def createInput(fileName=None, createTest=False): """Creates a CSV file with the result of the preprocessing step. Args: fileName: The CSV file that will be created createTest: If the preprocessing will be applyed in the test set """ corpus = globoquotes.load(GLOBOQUOTES_FILE) test = globoquotes.load(GLOBOQUOTES_TEST_FILE) converter = verbspeech.Converter() if not fileName: fileName = INPUT_FILE open(fileName, 'w').close() pos = feature.pos(corpus + test, posIndex = 1) columns = feature.columns(pos) if createTest: corpus = test i = 0 for i in range(len(corpus)): s = corpus[i] qs = baseline.quotationStart(s) qe = baseline.quotationEnd(s, qs) qb = baseline.quoteBounds(qs, qe) converter.vsay(s, tokenIndex = 0, posIndex = 1) #for k in range(len(s)): # print(k, s[k][0].ljust(30), s[k][1].ljust(10), s[k][7].ljust(5), qs[k], qe[k], qb[k]) # Baseline: X #print("Create bc...") bc = baseline.boundedChunk(s) #print("Create vsn...") vsn = baseline.verbSpeechNeighb(s) #print("Create fluc...") fluc = baseline.firstLetterUpperCase(s) #print("Identifying quotes...") quotes = wisinput.interval(qb) #print("Identifying coreferences...") coref, labels = wisinput.coref(s, quotes, corefIndex=7) #print("Creating features...") feat = feature.create(s, quotes=quotes, coref=coref, posIndex=1, corefIndex=7, quoteBounds=qb, bc=bc, vsn=vsn, fluc=fluc) #print("Binarying features...") bfeat = feature.binary(columns, feat) # Answer: Y #print("Output: Creating y...") qbA = [ e[INDEX_QB] for e in s ] #print("Output: Identifying quotes...") quotesA = wisinput.interval(qbA) #print("Output: Quotes = ", len(quotesA)) #print("Output: Identifying coreferences...") corefA, labelsA = wisinput.corefAnnotated(s, quotes=quotesA, corefIndex=7, gpqIndex=6) #print("Output: Coref = ", len(corefA)) #print("Output: Creating features...") featA = feature.create(s, quotes=quotesA, coref=corefA, posIndex=1, corefIndex=7, \ quoteBounds=qbA, bc=bc, vsn=vsn, fluc=fluc, dummy=False) #print("Output: Binarying features...") bfeatA = feature.binary(columns, featA) #print("Output: bFeat = ", len(bfeatA)) with open(fileName, 'a', newline='') as csvfile: swriter = csv.writer(csvfile, delimiter=';') for p in range(len(bfeat)): for q in range(len(bfeat[p])): swriter.writerow([i, "x"] + list(quotes[p]) + [labels[p][q]] + bfeat[p][q]) for p in range(len(bfeatA)): for q in range(len(bfeatA[p])): swriter.writerow([i, "y"] + list(quotesA[p]) + [labelsA[p][q]] + bfeatA[p][q])
def setUpClass(cls): cls._corpus = globoquotes.load(GLOBOQUOTES_FILE)