def _add_rolling_table(self): dtos = RollingAnalysisFactory.calculate_analysis(self.strategy_series, self.benchmark_series) column_names = [ Table.ColumnCell("Rolling Return Period", css_class="left-align"), "Strategy Average", "Strategy Worst", Table.ColumnCell("Strategy Best", css_class="right-align"), "Benchmark Average", "Benchmark Worst", Table.ColumnCell("Benchmark Best", css_class="right-align"), Table.ColumnCell("% Strategy outperform Benchmark")] result = Table(column_names, grid_proportion=GridProportion.Sixteen, css_class="table rolling-table") for dto in dtos: result.add_row([Table.Cell(dto.period, css_class="right-align"), Table.Cell(dto.strategy_average, "{:.2%}"), Table.Cell(dto.strategy_worst, "{:.2%}"), Table.Cell(dto.strategy_best, "{:.2%}"), Table.Cell(dto.benchmark_average, "{:.2%}"), Table.Cell(dto.benchmark_worst, "{:.2%}"), Table.Cell(dto.benchmark_best, "{:.2%}"), Table.Cell(dto.percentage_difference, "{:.2%}")]) self.document.add_element(result)
def populate_table(self, table: Table, name=None) -> None: """ Adds the data calculated in this analysis to the specified table. The table may be brand new or contain other analyses of the same kind. Parameters ---------- table The table to add the data to. name Name to give this analysis in the columns. """ new_table = Table() if name is None: name = self.returns_tms.name new_table.set_column_names(["Statistic", name]) for item in self._get_results_list(): row_name = item[1] + " [" + item[3] + "]" if item[3] == '': row_name = item[1] new_table.add_row([row_name, Table.Cell(item[2])]) if len(table.rows) != 0: new_table = table.combine(new_table) table.set_column_names(new_table.get_column_names()) table.rows = new_table.rows
def _add_table(self, tickers_eval_list): table = Table(column_names=["Ticker", "Max SQN per 100 trades", "Avg #trades per 1Y for Max SQN"], css_class="table stats-table") sorted_tickers_eval_list = sorted(tickers_eval_list, key=lambda x: x.SQN) for ticker_eval in sorted_tickers_eval_list: table.add_row([ticker_eval.ticker.as_string(), ticker_eval.SQN, ticker_eval.avg_nr_of_trades_1Y]) self.document.add_element(table)
def _add_statistics_table(self): table = Table(column_names=["Measure", "Value"], css_class="table stats-table") number_of_trades = self.returns_of_trades.count() table.add_row(["Number of trades", number_of_trades]) period_length = self.end_date - self.start_date period_length_in_years = to_days(period_length) / DAYS_PER_YEAR_AVG avg_number_of_trades = number_of_trades / period_length_in_years / self.nr_of_assets_traded table.add_row(["Avg number of trades per year per asset", avg_number_of_trades]) positive_trades = self.returns_of_trades[self.returns_of_trades > 0] negative_trades = self.returns_of_trades[self.returns_of_trades < 0] percentage_of_positive = positive_trades.count() / number_of_trades percentage_of_negative = negative_trades.count() / number_of_trades table.add_row(["% of positive trades", percentage_of_positive * 100]) table.add_row(["% of negative trades", percentage_of_negative * 100]) avg_positive = positive_trades.mean() avg_negative = negative_trades.mean() table.add_row(["Avg positive trade [%]", avg_positive * 100]) table.add_row(["Avg negative trade [%]", avg_negative * 100]) best_return = max(self.returns_of_trades) worst_return = min(self.returns_of_trades) table.add_row(["Best trade [%]", best_return * 100]) table.add_row(["Worst trade [%]", worst_return * 100]) max_dd = max_drawdown(self.returns_of_trades) table.add_row(["Max drawdown [%]", max_dd * 100]) prices_tms = self.returns_of_trades.to_prices() total_return = prices_tms.iloc[-1] / prices_tms.iloc[0] - 1 table.add_row(["Total return [%]", total_return * 100]) annualised_ret = annualise_total_return(total_return, period_length_in_years, SimpleReturnsSeries) table.add_row(["Annualised return [%]", annualised_ret * 100]) avg_return = self.returns_of_trades.mean() table.add_row(["Avg return of trade [%]", avg_return * 100]) std_of_returns = self.returns_of_trades.std() table.add_row(["Std of return of trades [%]", std_of_returns * 100]) # System Quality Number sqn = avg_return / std_of_returns table.add_row(["SQN", sqn]) table.add_row(["SQN for 100 trades", sqn * 10]) # SQN * sqrt(100) table.add_row(["SQN * Sqrt(avg number of trades per year)", sqn * sqrt(avg_number_of_trades)]) self.document.add_element(table)
def _insert_table_with_overall_measures(self, prices_df: PricesDataFrame, ticker: Ticker): table = Table(column_names=["Measure", "Value"], css_class="table stats-table") table.add_row(["Instrument", ticker.as_string()]) series = prices_df[PriceField.Close] table.add_row(["Start date", date_to_str(series.index[0])]) table.add_row(["End date", date_to_str(series.index[-1])]) trend_strength_overall = trend_strength(prices_df, self.use_next_open_instead_of_close) table.add_row(["Overall strength of the day trends", trend_strength_overall]) trend_strength_1y = trend_strength(prices_df.tail(252), self.use_next_open_instead_of_close) table.add_row(["Strength of the day trends in last 1Y", trend_strength_1y]) self.ticker_to_trend_dict[ticker] = (trend_strength_1y, trend_strength_overall) table.add_row(["Up trends strength", up_trend_strength(prices_df, self.use_next_open_instead_of_close)]) table.add_row(["Down trends strength", down_trend_strength(prices_df, self.use_next_open_instead_of_close)]) self.document.add_element(table)