コード例 #1
0
def test_ideal_harmonic_oscillator():
    omega, N, D = 1, 5, 3
    H = HarmonicOscillator(omega_ho=omega)
    psi = SimpleGaussian(alpha=0.5 * omega)
    sampler = ImportanceSampler(np.empty((N, D)), psi, 0.1)
    sampler.thermalize(10000)

    # Energy:
    E = compute_statistics_for_series(H.local_energy_array(
        sampler, psi, 2**10))
    assert N * D * omega / 2 == E["mean"], "Energy should be exactly equal."
    assert E["var"] < 1e-16

    # Squared radius:
    r2 = compute_statistics_for_series(H.mean_squared_radius_array(
        sampler, 2**16),
                                       method="blocking")
    print(r2)
    assert (abs(3 / omega / 2 - r2["mean"]) <
            1.96 * r2["sem"]), "Should be withing 95% CI of analytic result."

    # Radius:
    r = compute_statistics_for_series(H.mean_radius_array(sampler, 2**16),
                                      method="blocking")
    print(r)
    assert (abs(2 / np.sqrt(np.pi * omega) - r["mean"]) <
            1.96 * r["sem"]), "Should be withing 95% CI of analytic result."
コード例 #2
0
    r"Adam($\eta=0.05,\beta_1=0.7$)",
]
optimizers = [
    SgdOptimizer(0.1),
    SgdOptimizer(0.05),
    SgdOptimizer(0.025),
    SgdOptimizer(0.01),
    AdamOptimizer(len(psi.parameters), 0.05, 0.9),
    AdamOptimizer(len(psi.parameters), 0.05, 0.7),
]
E = []
for opt in optimizers:
    # psi.parameters = org_params
    psi = SimpleGaussian(0.8)
    sampler = ImportanceSampler(system, psi, 0.1)
    sampler.thermalize(10000)
    E_training = EnergyCallback(samples=1000000, verbose=True)
    train(
        psi,
        H,
        sampler,
        iters=150,
        samples=1000,
        gamma=0.0,
        optimizer=opt,
        call_backs=[E_training],
        call_back_resolution=50,
    )
    E.append(np.asarray(E_training))

if master_rank():
コード例 #3
0
    compute_statistics_for_series(
        H.local_energy_array(psi_bench_sampler, psi_bench, evaluation_points),
        method="blocking",
    ),
    compute_statistics_for_series(H.local_energy_array(psi_sampler, psi,
                                                       evaluation_points),
                                  method="blocking"),
    compute_statistics_for_series(
        H.local_energy_array(psi_sorted_sampler, psi_sorted,
                             evaluation_points),
        method="blocking",
    ),
]
old = psi_sorted.parameters
psi_sorted.parameters = psi.parameters
psi_sorted_sampler.thermalize(10000)

stats.append(
    compute_statistics_for_series(
        H.local_energy_array(psi_sorted_sampler, psi_sorted,
                             evaluation_points),
        method="blocking",
    ))
labels = [
    r"$\psi_{PJ}$", r"$\psi_{DNN}$", r"$\psi_{SDNN}$", r"$\hat{\psi}_{SDNN}$"
]

mpiprint(stats, pretty=True)
mpiprint(statistics_to_tex(stats, labels, filename=__file__ + ".table.tex"))
# mpiprint(psi.parameters)
コード例 #4
0
from qflow.wavefunctions import SimpleGaussian
from qflow.hamiltonians import HarmonicOscillator
from qflow.samplers import ImportanceSampler
from qflow.statistics import compute_statistics_for_series, statistics_to_tex
from qflow.mpi import mpiprint

N, D = 100, 3
system = np.empty((N, D))
H = HarmonicOscillator(omega_ho=1)
psi_opt = SimpleGaussian(alpha=0.5)
psi_nopt = SimpleGaussian(alpha=0.51)
sampler_opt = ImportanceSampler(system, psi_opt, 0.1)
sampler_nopt = ImportanceSampler(system, psi_nopt, 0.1)

sampler_opt.thermalize(10000)
sampler_nopt.thermalize(10000)

samples = 2**23

stats = [
    compute_statistics_for_series(
        H.local_energy_array(sampler_opt, psi_opt, 100) / N),
    compute_statistics_for_series(
        H.local_energy_array(sampler_nopt, psi_nopt, samples) / N,
        method="blocking"),
]

labels = [r"$\alpha_G = 0.5$", r"$\alpha_G=0.51$"]

mpiprint(statistics_to_tex(stats, labels, filename=__file__ + ".table1.tex"))
コード例 #5
0
import matplotlib.pyplot as plt
import matplotlib2tikz

from qflow.wavefunctions import SimpleGaussian
from qflow.hamiltonians import HarmonicOscillator
from qflow.samplers import ImportanceSampler
from qflow.optimizers import SgdOptimizer
from qflow.training import train, EnergyCallback, ParameterCallback

N, D = 10, 3
system = np.empty((N, D))
H = HarmonicOscillator(omega_ho=1)
psi_G = SimpleGaussian(alpha=0.3)
isampler_G = ImportanceSampler(system, psi_G, 0.1)

isampler_G.thermalize(10000)

E_training = EnergyCallback(samples=50000, verbose=True)
G_training = ParameterCallback()
train(
    psi_G,
    H,
    isampler_G,
    iters=100,
    samples=1000,
    gamma=0,
    optimizer=SgdOptimizer(0.001),
    call_backs=[E_training, G_training],
)
E_training = np.asarray(E_training) / N
コード例 #6
0
system = np.empty((N, D))
H = HarmonicOscillator(omega_ho=1)
psi = SimpleGaussian(alpha=0.51)

n_thermal = 50000
n_energy = 2**21

arm, ari = [], []
semm, semi = [], []
steps = np.logspace(-6.5, 1.1, 150)
for step in tqdm(steps):
    ms = MetropolisSampler(system, psi, step)
    si = ImportanceSampler(system, psi, step)

    ms.thermalize(n_thermal)
    si.thermalize(n_thermal)

    arm.append(ms.acceptance_rate * 100)
    ari.append(si.acceptance_rate * 100)
    semm.append(
        compute_statistics_for_series(H.local_energy_array(ms, psi, n_energy),
                                      method="blocking")["sem"])
    semi.append(
        compute_statistics_for_series(H.local_energy_array(si, psi, n_energy),
                                      method="blocking")["sem"])

if master_rank():
    mask = np.asarray(semi) < np.max(semm)

    fig, ax1 = plt.subplots()
    met, = ax1.semilogx(steps, arm)