コード例 #1
0
ファイル: test_qpea.py プロジェクト: JonathonMisiewicz/qforte
    def test_large_eigenvalue(self):
        E_fci = -20

        coef_vec = [E_fci, 0]

        circ_vec = [
        Circuit( ), build_circuit('Z_1')
        ]

        H2_qubit_hamiltonian = QubitOperator()
        for i in range(len(circ_vec)):
            H2_qubit_hamiltonian.add(coef_vec[i], circ_vec[i])

        ref = [1,0]

        print('\nBegin QPE test')
        print('----------------------')

        # make test with algorithm class
        mol = Molecule()
        mol.hamiltonian = H2_qubit_hamiltonian

        alg = QPE(mol, reference=ref, trotter_number=2)
        alg.run(guess_energy = E_fci,
                t = 1,
                nruns = 50,
                success_prob = 0.9,
                num_precise_bits = 8)

        Egs = alg.get_gs_energy()
        assert Egs == approx(E_fci, abs=1.1e-3)
コード例 #2
0
    def test_trotterization(self):

        circ_vec = [Circuit(), build_circuit('Z_0')]
        coef_vec = [-1.0j * 0.5, -1.0j * -0.04544288414432624]

        # the operator to be exponentiated
        minus_iH = QubitOperator()
        for i in range(len(circ_vec)):
            minus_iH.add(coef_vec[i], circ_vec[i])

        # exponentiate the operator
        Utrot, phase = trotterization.trotterize(minus_iH)

        inital_state = np.zeros(2**4, dtype=complex)
        inital_state[3] = np.sqrt(2 / 3)
        inital_state[12] = -np.sqrt(1 / 3)

        # initalize a quantum computer with above coeficients
        # i.e. ca|1100> + cb|0011>
        qc = Computer(4)
        qc.set_coeff_vec(inital_state)

        # apply the troterized minus_iH
        qc.apply_circuit(Utrot)
        qc.apply_constant(phase)

        smart_print(qc)

        coeffs = qc.get_coeff_vec()

        assert np.real(coeffs[3]) == approx(0.6980209737879599, abs=1.0e-15)
        assert np.imag(coeffs[3]) == approx(-0.423595782342996, abs=1.0e-15)
        assert np.real(coeffs[12]) == approx(-0.5187235657531178, abs=1.0e-15)
        assert np.imag(coeffs[12]) == approx(0.25349397560041553, abs=1.0e-15)
コード例 #3
0
ファイル: test_qpea.py プロジェクト: JonathonMisiewicz/qforte
    def test_H2_qpe(self):
        print('\n'),
        # The FCI energy for H2 at 1.5 Angstrom in a sto-3g basis
        E_fci = -0.9981493534

        coef_vec = [-0.4917857774144603,
                    0.09345649662931771,
                    0.09345649662931771,
                    -0.0356448161226769,
                    -0.0356448161226769,
                    0.1381758457453024,
                    0.05738398402634884,
                    -0.0573839840263488,
                    -0.0573839840263488,
                    0.05738398402634884,
                    0.08253705485911705,
                    0.13992103888546592,
                    0.13992103888546592,
                    0.08253705485911705,
                    0.1458551902800438]

        circ_vec = [
        Circuit( ),
        build_circuit( 'Z_0' ),
        build_circuit( 'Z_1' ),
        build_circuit( 'Z_2' ),
        build_circuit( 'Z_3' ),
        build_circuit( 'Z_0   Z_1' ),
        build_circuit( 'Y_0   X_1   X_2   Y_3' ),
        build_circuit( 'X_0   X_1   Y_2   Y_3' ),
        build_circuit( 'Y_0   Y_1   X_2   X_3' ),
        build_circuit( 'X_0   Y_1   Y_2   X_3' ),
        build_circuit( 'Z_0   Z_2' ),
        build_circuit( 'Z_0   Z_3' ),
        build_circuit( 'Z_1   Z_2' ),
        build_circuit( 'Z_1   Z_3' ),
        build_circuit( 'Z_2   Z_3' )]

        H2_qubit_hamiltonian = QubitOperator()
        for i in range(len(circ_vec)):
            H2_qubit_hamiltonian.add(coef_vec[i], circ_vec[i])

        ref = [1,1,0,0]

        print('\nBegin QPE test for H2')
        print('----------------------')

        # make test with algorithm class
        mol = Molecule()
        mol.hamiltonian = H2_qubit_hamiltonian

        alg = QPE(mol, reference=ref, trotter_number=2)
        alg.run(guess_energy = -1,
                t = 0.4,
                nruns = 100,
                success_prob = 0.5,
                num_precise_bits = 8)

        Egs = alg.get_gs_energy()
        assert Egs == approx(E_fci, abs=1.1e-3)
コード例 #4
0
    def test_trotterization_with_controlled_U(self):

        circ_vec = [build_circuit('Y_0 X_1'), build_circuit('X_0 Y_1')]
        coef_vec = [-1.0719145972781818j, 1.0719145972781818j]

        # the operator to be exponentiated
        minus_iH = QubitOperator()
        for i in range(len(circ_vec)):
            minus_iH.add(coef_vec[i], circ_vec[i])

        ancilla_idx = 2

        # exponentiate the operator
        Utrot, phase = trotterization.trotterize_w_cRz(minus_iH, ancilla_idx)

        # Case 1: positive control

        # initalize a quantum computer
        qc = Computer(3)

        # build HF state
        qc.apply_gate(gate('X', 0, 0))

        # put ancilla in |1> state
        qc.apply_gate(gate('X', 2, 2))

        # apply the troterized minus_iH
        qc.apply_circuit(Utrot)

        smart_print(qc)

        coeffs = qc.get_coeff_vec()

        assert coeffs[5] == approx(-0.5421829373021542, abs=1.0e-15)
        assert coeffs[6] == approx(-0.8402604730072732, abs=1.0e-15)

        # Case 2: negitive control

        # initalize a quantum computer
        qc = Computer(3)

        # build HF state
        qc.apply_gate(gate('X', 0, 0))

        # apply the troterized minus_iH
        qc.apply_circuit(Utrot)

        smart_print(qc)

        coeffs = qc.get_coeff_vec()

        assert coeffs[1] == approx(1, abs=1.0e-15)
コード例 #5
0
    def test_H2_experiment_perfect(self):
        print('\n')
        #the RHF H2 energy at equilibrium bond length
        E_hf = -1.1166843870661929

        #the H2 qubit hamiltonian
        circ_vec = [
            Circuit(),
            build_circuit('Z_0'),
            build_circuit('Z_1'),
            build_circuit('Z_2'),
            build_circuit('Z_3'),
            build_circuit('Z_0 Z_1'),
            build_circuit('Y_0 X_1 X_2 Y_3'),
            build_circuit('Y_0 Y_1 X_2 X_3'),
            build_circuit('X_0 X_1 Y_2 Y_3'),
            build_circuit('X_0 Y_1 Y_2 X_3'),
            build_circuit('Z_0 Z_2'),
            build_circuit('Z_0 Z_3'),
            build_circuit('Z_1 Z_2'),
            build_circuit('Z_1 Z_3'),
            build_circuit('Z_2 Z_3')
        ]

        coef_vec = [
            -0.098863969784274, 0.1711977489805748, 0.1711977489805748,
            -0.222785930242875, -0.222785930242875, 0.1686221915724993,
            0.0453222020577776, -0.045322202057777, -0.045322202057777,
            0.0453222020577776, 0.1205448220329002, 0.1658670240906778,
            0.1658670240906778, 0.1205448220329002, 0.1743484418396386
        ]

        H2_qubit_hamiltonian = QubitOperator()
        for i in range(len(circ_vec)):
            H2_qubit_hamiltonian.add(coef_vec[i], circ_vec[i])

        # circuit for making HF state
        circ = Circuit()
        circ.add(gate('X', 0, 0))
        circ.add(gate('X', 1, 1))

        TestExperiment = Experiment(4, circ, H2_qubit_hamiltonian, 1000000)
        params2 = []
        avg_energy = TestExperiment.perfect_experimental_avg(params2)
        print('Perfectly Measured H2 Experimental Avg. Energy')
        print(avg_energy)
        print('H2 RHF Energy')
        print(E_hf)

        experimental_error = abs(avg_energy - E_hf)

        assert experimental_error == approx(0, abs=1.0e-14)
コード例 #6
0
    def test_op_exp_val_1(self):
        # test direct expectation value measurement
        trial_state = Computer(4)

        trial_prep = [None] * 5
        trial_prep[0] = gate('H', 0, 0)
        trial_prep[1] = gate('H', 1, 1)
        trial_prep[2] = gate('H', 2, 2)
        trial_prep[3] = gate('H', 3, 3)
        trial_prep[4] = gate('cX', 0, 1)

        trial_circ = Circuit()

        #prepare the circuit
        for gate_ in trial_prep:
            trial_circ.add(gate_)

        # use circuit to prepare trial state
        trial_state.apply_circuit(trial_circ)

        # gates needed for [a1^ a2] operator
        X1 = gate('X', 1, 1)
        X2 = gate('X', 2, 2)
        Y1 = gate('Y', 1, 1)
        Y2 = gate('Y', 2, 2)

        # initialize circuits to make operator
        circ1 = Circuit()
        circ1.add(X2)
        circ1.add(Y1)
        circ2 = Circuit()
        circ2.add(Y2)
        circ2.add(Y1)
        circ3 = Circuit()
        circ3.add(X2)
        circ3.add(X1)
        circ4 = Circuit()
        circ4.add(Y2)
        circ4.add(X1)

        #build the quantum operator for [a1^ a2]
        a1_dag_a2 = QubitOperator()
        a1_dag_a2.add(0.0 - 0.25j, circ1)
        a1_dag_a2.add(0.25, circ2)
        a1_dag_a2.add(0.25, circ3)
        a1_dag_a2.add(0.0 + 0.25j, circ4)

        #get direct expectatoin value
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(0.25, abs=2.0e-16)
コード例 #7
0
    def test_jw2(self):
        coeff_vec = [
            -0.25j, -0.25, 0.25, -0.25j, -0.125j, 0.125, -0.125, -0.125j,
            -0.125, -0.125j, 0.125j, -0.125
        ]

        circ_vec = [
            build_circuit(x) for x in [
                "Y_2 X_3", "Y_2 Y_3", "X_2 X_3", "X_2 Y_3", "Z_0 X_1 Y_3 X_4",
                "Z_0 X_1 Y_3 Y_4", "Z_0 X_1 X_3 X_4", "Z_0 X_1 X_3 Y_4",
                "Z_0 Y_1 Y_3 X_4", "Z_0 Y_1 Y_3 Y_4", "Z_0 Y_1 X_3 X_4",
                "Z_0 Y_1 X_3 Y_4"
            ]
        ]
        correct_op = QubitOperator()
        for coeff, circ in zip(coeff_vec, circ_vec):
            correct_op.add(coeff, circ)
        a = SQOperator()
        a.add(1.00, [2, 3], [])
        a.add(1.00, [1], [3, 4])
        aop = a.jw_transform()
        assert aop.check_op_equivalence(correct_op, True) is True
コード例 #8
0
    def test_H4_fast_qkd(self):
        print('\n')
        # The FCI energy for H4 at 1.5 Angstrom in a sto-6g basis
        E_fci = -2.0126741263939656

        # The He hamilitonian
        circ_vec = [
        Circuit(),
         build_circuit('Z_0'),
         build_circuit('Y_0 Z_1 Z_2 Z_3 Y_4'),
         build_circuit('X_0 Z_1 Z_2 Z_3 X_4'),
         build_circuit('Z_1'),
         build_circuit('Y_1 Z_2 Z_3 Z_4 Y_5'),
         build_circuit('X_1 Z_2 Z_3 Z_4 X_5'),
         build_circuit('Z_2'),
         build_circuit('Y_2 Z_3 Z_4 Z_5 Y_6'),
         build_circuit('X_2 Z_3 Z_4 Z_5 X_6'),
         build_circuit('Z_3'),
         build_circuit('Y_3 Z_4 Z_5 Z_6 Y_7'),
         build_circuit('X_3 Z_4 Z_5 Z_6 X_7'),
         build_circuit('Z_4'),
         build_circuit('Z_5'),
         build_circuit('Z_6'),
         build_circuit('Z_7'),
         build_circuit('Z_0 Z_1'),
         build_circuit('Y_0 Z_2 Z_3 Y_4'),
         build_circuit('X_0 Z_2 Z_3 X_4'),
         build_circuit('Y_0 X_1 X_2 Y_3'),
         build_circuit('X_0 X_1 Y_2 Y_3'),
         build_circuit('Y_0 Y_1 X_2 X_3'),
         build_circuit('X_0 Y_1 Y_2 X_3'),
         build_circuit('Y_0 X_1 X_3 Z_4 Z_5 Y_6'),
         build_circuit('X_0 X_1 X_3 Z_4 Z_5 X_6'),
         build_circuit('Y_0 Y_1 Y_3 Z_4 Z_5 Y_6'),
         build_circuit('X_0 Y_1 Y_3 Z_4 Z_5 X_6'),
         build_circuit('Z_0 Y_1 Z_2 Z_3 Z_4 Y_5'),
         build_circuit('Z_0 X_1 Z_2 Z_3 Z_4 X_5'),
         build_circuit('Y_0 X_1 X_4 Y_5'),
         build_circuit('X_0 X_1 Y_4 Y_5'),
         build_circuit('Y_0 Y_1 X_4 X_5'),
         build_circuit('X_0 Y_1 Y_4 X_5'),
         build_circuit('Y_0 X_1 X_2 Z_3 Z_4 Z_5 Z_6 Y_7'),
         build_circuit('X_0 X_1 Y_2 Z_3 Z_4 Z_5 Z_6 Y_7'),
         build_circuit('Y_0 Y_1 X_2 Z_3 Z_4 Z_5 Z_6 X_7'),
         build_circuit('X_0 Y_1 Y_2 Z_3 Z_4 Z_5 Z_6 X_7'),
         build_circuit('Y_0 X_1 X_6 Y_7'),
         build_circuit('X_0 X_1 Y_6 Y_7'),
         build_circuit('Y_0 Y_1 X_6 X_7'),
         build_circuit('X_0 Y_1 Y_6 X_7'),
         build_circuit('Z_0 Z_2'),
         build_circuit('Z_0 Y_2 Z_3 Z_4 Z_5 Y_6'),
         build_circuit('Z_0 X_2 Z_3 Z_4 Z_5 X_6'),
         build_circuit('Y_0 Z_1 Z_3 Y_4'),
         build_circuit('X_0 Z_1 Z_3 X_4'),
         build_circuit('Y_0 Z_1 X_2 X_4 Z_5 Y_6'),
         build_circuit('X_0 Z_1 X_2 X_4 Z_5 X_6'),
         build_circuit('X_0 Z_1 X_2 Y_4 Z_5 Y_6'),
         build_circuit('Y_0 Z_1 Y_2 X_4 Z_5 X_6'),
         build_circuit('Y_0 Z_1 Y_2 Y_4 Z_5 Y_6'),
         build_circuit('X_0 Z_1 Y_2 Y_4 Z_5 X_6'),
         build_circuit('Z_0 Z_3'),
         build_circuit('Y_0 Z_1 Z_2 Y_4'),
         build_circuit('X_0 Z_1 Z_2 X_4'),
         build_circuit('Y_0 Z_1 Y_2 Y_3 Z_4 Y_5'),
         build_circuit('X_0 Z_1 X_2 Y_3 Z_4 Y_5'),
         build_circuit('Y_0 Z_1 Y_2 X_3 Z_4 X_5'),
         build_circuit('X_0 Z_1 X_2 X_3 Z_4 X_5'),
         build_circuit('Y_0 Z_1 Z_2 X_3 X_5 Y_6'),
         build_circuit('X_0 Z_1 Z_2 X_3 X_5 X_6'),
         build_circuit('Y_0 Z_1 Z_2 Y_3 Y_5 Y_6'),
         build_circuit('X_0 Z_1 Z_2 Y_3 Y_5 X_6'),
         build_circuit('Z_0 Y_3 Z_4 Z_5 Z_6 Y_7'),
         build_circuit('Z_0 X_3 Z_4 Z_5 Z_6 X_7'),
         build_circuit('Y_0 Z_1 Z_2 X_3 X_4 Z_5 Z_6 Y_7'),
         build_circuit('X_0 Z_1 Z_2 X_3 Y_4 Z_5 Z_6 Y_7'),
         build_circuit('Y_0 Z_1 Z_2 Y_3 X_4 Z_5 Z_6 X_7'),
         build_circuit('X_0 Z_1 Z_2 Y_3 Y_4 Z_5 Z_6 X_7'),
         build_circuit('Z_0 Z_4'),
         build_circuit('Z_0 Z_5'),
         build_circuit('Y_0 Z_1 Z_2 Z_3 Y_4 Z_5'),
         build_circuit('X_0 Z_1 Z_2 Z_3 X_4 Z_5'),
         build_circuit('Y_0 Z_1 Y_2 Y_5 Z_6 Y_7'),
         build_circuit('X_0 Z_1 X_2 Y_5 Z_6 Y_7'),
         build_circuit('Y_0 Z_1 Y_2 X_5 Z_6 X_7'),
         build_circuit('X_0 Z_1 X_2 X_5 Z_6 X_7'),
         build_circuit('Y_0 Z_1 Z_2 Z_3 Z_4 X_5 X_6 Y_7'),
         build_circuit('X_0 Z_1 Z_2 Z_3 Z_4 X_5 Y_6 Y_7'),
         build_circuit('Y_0 Z_1 Z_2 Z_3 Z_4 Y_5 X_6 X_7'),
         build_circuit('X_0 Z_1 Z_2 Z_3 Z_4 Y_5 Y_6 X_7'),
         build_circuit('Z_0 Z_6'),
         build_circuit('Y_0 Z_1 Z_2 Z_3 Y_4 Z_6'),
         build_circuit('X_0 Z_1 Z_2 Z_3 X_4 Z_6'),
         build_circuit('Z_0 Z_7'),
         build_circuit('Y_0 Z_1 Z_2 Z_3 Y_4 Z_7'),
         build_circuit('X_0 Z_1 Z_2 Z_3 X_4 Z_7'),
         build_circuit('Z_1 Z_2'),
         build_circuit('Y_1 Z_3 Z_4 Y_5'),
         build_circuit('X_1 Z_3 Z_4 X_5'),
         build_circuit('Y_1 X_2 X_3 Y_4'),
         build_circuit('X_1 X_2 Y_3 Y_4'),
         build_circuit('Y_1 Y_2 X_3 X_4'),
         build_circuit('X_1 Y_2 Y_3 X_4'),
         build_circuit('Y_1 X_2 X_4 Z_5 Z_6 Y_7'),
         build_circuit('X_1 X_2 X_4 Z_5 Z_6 X_7'),
         build_circuit('Y_1 Y_2 Y_4 Z_5 Z_6 Y_7'),
         build_circuit('X_1 Y_2 Y_4 Z_5 Z_6 X_7'),
         build_circuit('Z_1 Y_2 Z_3 Z_4 Z_5 Y_6'),
         build_circuit('Z_1 X_2 Z_3 Z_4 Z_5 X_6'),
         build_circuit('Y_1 X_2 X_5 Y_6'),
         build_circuit('X_1 X_2 Y_5 Y_6'),
         build_circuit('Y_1 Y_2 X_5 X_6'),
         build_circuit('X_1 Y_2 Y_5 X_6'),
         build_circuit('Z_1 Z_3'),
         build_circuit('Z_1 Y_3 Z_4 Z_5 Z_6 Y_7'),
         build_circuit('Z_1 X_3 Z_4 Z_5 Z_6 X_7'),
         build_circuit('Y_1 Z_2 Z_4 Y_5'),
         build_circuit('X_1 Z_2 Z_4 X_5'),
         build_circuit('Y_1 Z_2 X_3 X_5 Z_6 Y_7'),
         build_circuit('X_1 Z_2 X_3 X_5 Z_6 X_7'),
         build_circuit('X_1 Z_2 X_3 Y_5 Z_6 Y_7'),
         build_circuit('Y_1 Z_2 Y_3 X_5 Z_6 X_7'),
         build_circuit('Y_1 Z_2 Y_3 Y_5 Z_6 Y_7'),
         build_circuit('X_1 Z_2 Y_3 Y_5 Z_6 X_7'),
         build_circuit('Z_1 Z_4'),
         build_circuit('Y_1 Z_2 Z_3 Y_5'),
         build_circuit('X_1 Z_2 Z_3 X_5'),
         build_circuit('Y_1 Z_2 Y_3 Y_4 Z_5 Y_6'),
         build_circuit('X_1 Z_2 X_3 Y_4 Z_5 Y_6'),
         build_circuit('Y_1 Z_2 Y_3 X_4 Z_5 X_6'),
         build_circuit('X_1 Z_2 X_3 X_4 Z_5 X_6'),
         build_circuit('Y_1 Z_2 Z_3 X_4 X_6 Y_7'),
         build_circuit('X_1 Z_2 Z_3 X_4 X_6 X_7'),
         build_circuit('Y_1 Z_2 Z_3 Y_4 Y_6 Y_7'),
         build_circuit('X_1 Z_2 Z_3 Y_4 Y_6 X_7'),
         build_circuit('Z_1 Z_5'),
         build_circuit('Z_1 Z_6'),
         build_circuit('Y_1 Z_2 Z_3 Z_4 Y_5 Z_6'),
         build_circuit('X_1 Z_2 Z_3 Z_4 X_5 Z_6'),
         build_circuit('Z_1 Z_7'),
         build_circuit('Y_1 Z_2 Z_3 Z_4 Y_5 Z_7'),
         build_circuit('X_1 Z_2 Z_3 Z_4 X_5 Z_7'),
         build_circuit('Z_2 Z_3'),
         build_circuit('Y_2 Z_4 Z_5 Y_6'),
         build_circuit('X_2 Z_4 Z_5 X_6'),
         build_circuit('Y_2 X_3 X_4 Y_5'),
         build_circuit('X_2 X_3 Y_4 Y_5'),
         build_circuit('Y_2 Y_3 X_4 X_5'),
         build_circuit('X_2 Y_3 Y_4 X_5'),
         build_circuit('Z_2 Y_3 Z_4 Z_5 Z_6 Y_7'),
         build_circuit('Z_2 X_3 Z_4 Z_5 Z_6 X_7'),
         build_circuit('Y_2 X_3 X_6 Y_7'),
         build_circuit('X_2 X_3 Y_6 Y_7'),
         build_circuit('Y_2 Y_3 X_6 X_7'),
         build_circuit('X_2 Y_3 Y_6 X_7'),
         build_circuit('Z_2 Z_4'),
         build_circuit('Y_2 Z_3 Z_5 Y_6'),
         build_circuit('X_2 Z_3 Z_5 X_6'),
         build_circuit('Z_2 Z_5'),
         build_circuit('Y_2 Z_3 Z_4 Y_6'),
         build_circuit('X_2 Z_3 Z_4 X_6'),
         build_circuit('Y_2 Z_3 Y_4 Y_5 Z_6 Y_7'),
         build_circuit('X_2 Z_3 X_4 Y_5 Z_6 Y_7'),
         build_circuit('Y_2 Z_3 Y_4 X_5 Z_6 X_7'),
         build_circuit('X_2 Z_3 X_4 X_5 Z_6 X_7'),
         build_circuit('Z_2 Z_6'),
         build_circuit('Z_2 Z_7'),
         build_circuit('Y_2 Z_3 Z_4 Z_5 Y_6 Z_7'),
         build_circuit('X_2 Z_3 Z_4 Z_5 X_6 Z_7'),
         build_circuit('Z_3 Z_4'),
         build_circuit('Y_3 Z_5 Z_6 Y_7'),
         build_circuit('X_3 Z_5 Z_6 X_7'),
         build_circuit('Y_3 X_4 X_5 Y_6'),
         build_circuit('X_3 X_4 Y_5 Y_6'),
         build_circuit('Y_3 Y_4 X_5 X_6'),
         build_circuit('X_3 Y_4 Y_5 X_6'),
         build_circuit('Z_3 Z_5'),
         build_circuit('Y_3 Z_4 Z_6 Y_7'),
         build_circuit('X_3 Z_4 Z_6 X_7'),
         build_circuit('Z_3 Z_6'),
         build_circuit('Y_3 Z_4 Z_5 Y_7'),
         build_circuit('X_3 Z_4 Z_5 X_7'),
         build_circuit('Z_3 Z_7'),
         build_circuit('Z_4 Z_5'),
         build_circuit('Y_4 X_5 X_6 Y_7'),
         build_circuit('X_4 X_5 Y_6 Y_7'),
         build_circuit('Y_4 Y_5 X_6 X_7'),
         build_circuit('X_4 Y_5 Y_6 X_7'),
         build_circuit('Z_4 Z_6'),
         build_circuit('Z_4 Z_7'),
         build_circuit('Z_5 Z_6'),
         build_circuit('Z_5 Z_7'),
         build_circuit('Z_6 Z_7')]

        coef_vec = [
        -0.9398866173443505,
        0.12129073807829349,
        0.00641125283150221,
        0.00641125283150221,
        0.12129073807829353,
        0.0064112528315022135,
        0.0064112528315022135,
        0.07308734612725618,
        -0.010595295586558178,
        -0.010595295586558178,
        0.0730873461272563,
        -0.010595295586558171,
        -0.010595295586558171,
        -0.004903180263267734,
        -0.0049031802632676785,
        -0.0972417632017775,
        -0.09724176320177753,
        0.10115751743776852,
        0.016853161923367253,
        0.016853161923367253,
        0.03977035285263866,
        -0.03977035285263866,
        -0.03977035285263866,
        0.03977035285263866,
        0.00905981792020611,
        0.00905981792020611,
        0.00905981792020611,
        0.00905981792020611,
        0.016853161923367253,
        0.016853161923367253,
        0.028827330860814942,
        -0.028827330860814942,
        -0.028827330860814942,
        0.028827330860814942,
        -0.00905981792020611,
        0.00905981792020611,
        0.00905981792020611,
        -0.00905981792020611,
        0.027456714140683562,
        -0.027456714140683562,
        -0.027456714140683562,
        0.027456714140683562,
        0.05019794254014193,
        0.008400644724214635,
        0.008400644724214635,
        0.01678679876377047,
        0.01678679876377047,
        0.008370670304957601,
        0.019986723846961468,
        0.011616053542003863,
        0.011616053542003863,
        0.019986723846961468,
        0.008370670304957601,
        0.08996829539278059,
        -0.00401664635059683,
        -0.00401664635059683,
        0.020803445114367297,
        0.020803445114367297,
        0.020803445114367297,
        0.020803445114367297,
        -0.020045295426307817,
        -0.020045295426307817,
        -0.020045295426307817,
        -0.020045295426307817,
        0.01746046264442075,
        0.01746046264442075,
        0.028415965731265418,
        -0.028415965731265418,
        -0.028415965731265418,
        0.028415965731265418,
        0.062364797002734416,
        0.09119212786354935,
        -0.0029292718691351837,
        -0.0029292718691351837,
        0.040032019273269284,
        0.040032019273269284,
        0.040032019273269284,
        0.040032019273269284,
        -0.008895760438436422,
        0.008895760438436422,
        0.008895760438436422,
        -0.008895760438436422,
        0.077813400984472,
        0.008622786573744252,
        0.008622786573744252,
        0.10527011512515555,
        0.017518547012180676,
        0.017518547012180676,
        0.08996829539278059,
        -0.00401664635059683,
        -0.00401664635059683,
        0.020803445114367297,
        -0.020803445114367297,
        -0.020803445114367297,
        0.020803445114367297,
        -0.020045295426307817,
        -0.020045295426307817,
        -0.020045295426307817,
        -0.020045295426307817,
        0.01746046264442075,
        0.01746046264442075,
        0.028415965731265418,
        -0.028415965731265418,
        -0.028415965731265418,
        0.028415965731265418,
        0.05019794254014193,
        0.008400644724214635,
        0.008400644724214635,
        0.01678679876377047,
        0.01678679876377047,
        0.008370670304957601,
        0.019986723846961468,
        0.011616053542003863,
        0.011616053542003863,
        0.019986723846961468,
        0.008370670304957601,
        0.09119212786354935,
        -0.0029292718691351837,
        -0.0029292718691351837,
        0.040032019273269284,
        0.040032019273269284,
        0.040032019273269284,
        0.040032019273269284,
        0.008895760438436422,
        0.008895760438436422,
        0.008895760438436422,
        0.008895760438436422,
        0.062364797002734416,
        0.10527011512515555,
        0.017518547012180676,
        0.017518547012180676,
        0.077813400984472,
        0.008622786573744252,
        0.008622786573744252,
        0.09416046345893181,
        -0.0025909758017290006,
        -0.0025909758017290006,
        0.035233425879700006,
        -0.035233425879700006,
        -0.035233425879700006,
        0.035233425879700006,
        -0.0025909758017290006,
        -0.0025909758017290006,
        0.029476085351951252,
        -0.029476085351951252,
        -0.029476085351951252,
        0.029476085351951252,
        0.05898073895378817,
        0.018463477774636035,
        0.018463477774636035,
        0.09421416483348818,
        -0.003276374161489622,
        -0.003276374161489622,
        0.02173985193612566,
        0.02173985193612566,
        0.02173985193612566,
        0.02173985193612566,
        0.06484557443787466,
        0.0943216597898259,
        0.01867832322072119,
        0.01867832322072119,
        0.09421416483348818,
        -0.003276374161489622,
        -0.003276374161489622,
        0.02173985193612566,
        -0.02173985193612566,
        -0.02173985193612566,
        0.02173985193612566,
        0.05898073895378817,
        0.018463477774636035,
        0.018463477774636035,
        0.0943216597898259,
        0.01867832322072119,
        0.01867832322072119,
        0.06484557443787466,
        0.0970891982291751,
        0.042405629926062886,
        -0.042405629926062886,
        -0.042405629926062886,
        0.042405629926062886,
        0.05395287215237218,
        0.09635850207843506,
        0.09635850207843506,
        0.05395287215237218,
        0.11278693858600855]

        H4_qubit_hamiltonian = QubitOperator()
        for i in range(len(circ_vec)):
            H4_qubit_hamiltonian.add(coef_vec[i], circ_vec[i])

        ref = [1,1,1,1,0,0,0,0]

        # make test with algorithm class
        mol = Molecule()
        mol.hamiltonian = H4_qubit_hamiltonian

        # WARNING! With large s, these methods can become numerically unstable.
        # Near 0 eigenvalues in the overlap matrices lead to unstable eigenvectors.

        # MRSQK
        alg2 = MRSQK(mol, reference=ref, trotter_number=100)
        alg2.run(s=3, d=3)
        Egs2 = alg2.get_gs_energy()
        assert Egs2 == approx(E_fci, abs=1.0e-6)

        # SRQK
        alg1 = SRQK(mol, reference=ref, trotter_number=100)
        alg1.run(s=6)
        Egs1 = alg1.get_gs_energy()
        assert Egs1 == approx(E_fci, abs=1.0e-4)

        # Non-Trotterized (exact) SRQK
        alg0 = NTSRQK(mol, reference=ref, verbose=True)
        alg0.run(s=4, dt = 0.8)
        Egs0 = alg0.get_gs_energy()
        assert Egs0 == approx(E_fci, abs=1.0e-3)
コード例 #9
0
    def test_sparse_operator(self):
        """
        test the SparseMatrix and SparseVector classes
        """

        coeff_vec = [
            -0.093750, +0.093750j, -0.093750, -0.093750j, -0.093750,
            -0.093750j, +0.062500j, -0.093750, -0.093750, +0.093750j,
            +0.093750, -0.062500, -0.093750j, -0.062500j, +0.062500j,
            -0.062500, +0.062500, +0.062500, -0.062500j, -0.093750, +0.062500j,
            -0.062500, -0.062500j, -0.062500, +0.093750j, +0.093750j,
            +0.062500j, +0.093750, -0.062500, -0.062500, -0.093750j, -0.062500j
        ]

        circ_vec = [
            build_circuit('X_1 Y_2 X_3 Y_4'),
            build_circuit('X_1 Y_2 X_3 X_4'),
            build_circuit('X_1 Y_2 Y_3 X_4'),
            build_circuit('X_1 X_2 X_3 Y_4'),
            build_circuit('X_1 X_2 X_3 X_4'),
            build_circuit('X_1 X_2 Y_3 X_4'),
            build_circuit('Y_2 X_3 X_4 Z_5 X_6'),
            build_circuit('Y_1 Y_2 Y_3 Y_4'),
            build_circuit('Y_1 X_2 X_3 Y_4'),
            build_circuit('Y_1 X_2 X_3 X_4'),
            build_circuit('Y_1 Y_2 X_3 X_4'),
            build_circuit('X_2 X_3 X_4 Z_5 X_6'),
            build_circuit('Y_1 X_2 Y_3 Y_4'),
            build_circuit('X_2 Y_3 Y_4 Z_5 Y_6'),
            build_circuit('X_2 Y_3 X_4 Z_5 X_6'),
            build_circuit('X_2 Y_3 Y_4 Z_5 X_6'),
            build_circuit('X_2 X_3 Y_4 Z_5 Y_6'),
            build_circuit('Y_2 Y_3 X_4 Z_5 X_6'),
            build_circuit('X_2 X_3 Y_4 Z_5 X_6'),
            build_circuit('Y_1 X_2 Y_3 X_4'),
            build_circuit('Y_2 Y_3 X_4 Z_5 Y_6'),
            build_circuit('Y_2 X_3 X_4 Z_5 Y_6'),
            build_circuit('X_2 X_3 X_4 Z_5 Y_6'),
            build_circuit('X_2 Y_3 X_4 Z_5 Y_6'),
            build_circuit('Y_1 Y_2 Y_3 X_4'),
            build_circuit('Y_1 Y_2 X_3 Y_4'),
            build_circuit('Y_2 Y_3 Y_4 Z_5 X_6'),
            build_circuit('X_1 X_2 Y_3 Y_4'),
            build_circuit('Y_2 Y_3 Y_4 Z_5 Y_6'),
            build_circuit('Y_2 X_3 Y_4 Z_5 X_6'),
            build_circuit('X_1 Y_2 Y_3 Y_4'),
            build_circuit('Y_2 X_3 Y_4 Z_5 Y_6')
        ]

        qubit_op = QubitOperator()
        for coeff, circ in zip(coeff_vec, circ_vec):
            qubit_op.add(coeff, circ)

        num_qb = qubit_op.num_qubits()
        qci = Computer(num_qb)
        arb_vec = np.linspace(0, 2 * np.pi, 2**num_qb)
        arb_vec = arb_vec / np.linalg.norm(arb_vec)
        qci.set_coeff_vec(arb_vec)
        sp_mat_op = qubit_op.sparse_matrix(num_qb)
        ci = np.array(qci.get_coeff_vec())
        qci.apply_operator(qubit_op)
        diff_vec = np.array(qci.get_coeff_vec())

        # Reset stae
        qci.set_coeff_vec(ci)
        qci.apply_sparse_matrix(sp_mat_op)

        # see if there is a difference
        diff_vec = np.array(qci.get_coeff_vec()) - diff_vec
        diff_val = np.linalg.norm(diff_vec)
        print('Operator used for sparse matrix operator test: \n', qubit_op)
        print('||∆||:          ', diff_val)
        assert diff_val < 1.0e-15
コード例 #10
0
    def test_H2_qite(self):

        # The FCI energy for H2 at 1.5 Angstrom in a sto-3g basis
        E_fci = -0.9981493534

        coef_vec = [
            -0.4917857774144603, 0.09345649662931771, 0.09345649662931771,
            -0.0356448161226769, -0.0356448161226769, 0.1381758457453024,
            0.05738398402634884, -0.0573839840263488, -0.0573839840263488,
            0.05738398402634884, 0.08253705485911705, 0.13992103888546592,
            0.13992103888546592, 0.08253705485911705, 0.1458551902800438
        ]

        circ_vec = [
            Circuit(),
            build_circuit('Z_0'),
            build_circuit('Z_1'),
            build_circuit('Z_2'),
            build_circuit('Z_3'),
            build_circuit('Z_0   Z_1'),
            build_circuit('Y_0   X_1   X_2   Y_3'),
            build_circuit('X_0   X_1   Y_2   Y_3'),
            build_circuit('Y_0   Y_1   X_2   X_3'),
            build_circuit('X_0   Y_1   Y_2   X_3'),
            build_circuit('Z_0   Z_2'),
            build_circuit('Z_0   Z_3'),
            build_circuit('Z_1   Z_2'),
            build_circuit('Z_1   Z_3'),
            build_circuit('Z_2   Z_3')
        ]

        H2_qubit_hamiltonian = QubitOperator()
        for i in range(len(circ_vec)):
            H2_qubit_hamiltonian.add(coef_vec[i], circ_vec[i])

        H2_sq_hamiltonian = [[(), 0.3527848071133334],
                             [(0, 0), -0.9081808722384057],
                             [(1, 1), -0.9081808722384057],
                             [(2, 2), -0.6653369358038996],
                             [(3, 3), -0.6653369358038996],
                             [(1, 0, 1, 0), -0.5527033829812091],
                             [(1, 0, 3, 2), -0.22953593610539536],
                             [(2, 0, 2, 0), -0.3301482194364681],
                             [(3, 0, 2, 1), 0.22953593610539527],
                             [(3, 0, 3, 0), -0.5596841555418633],
                             [(2, 1, 3, 0), 0.22953593610539527],
                             [(2, 1, 2, 1), -0.5596841555418633],
                             [(3, 1, 3, 1), -0.3301482194364681],
                             [(3, 2, 1, 0), -0.22953593610539522],
                             [(3, 2, 3, 2), -0.5834207611201749]]

        ref = [1, 1, 0, 0]

        print('\nBegin QITE test for H2')
        print('-------------------------')

        # make test with algorithm class #
        mol = Molecule()
        mol.hamiltonian = H2_qubit_hamiltonian
        mol.sq_hamiltonian = H2_sq_hamiltonian

        alg = QITE(mol, reference=ref)
        alg.run(beta=18.0, do_lanczos=True, lanczos_gap=49)
        Egs = alg.get_gs_energy()
        assert Egs == approx(E_fci, abs=1.0e-10)
コード例 #11
0
    def test_jw1(self):
        """
        test JW transform of 1.0(2^ 3^ 4 6) + 1.5(1^ 2^ 3 4)
        """

        coeff_vec = [
            -0.093750, +0.093750j, -0.093750, -0.093750j, -0.093750,
            -0.093750j, +0.062500j, -0.093750, -0.093750, +0.093750j,
            +0.093750, -0.062500, -0.093750j, -0.062500j, +0.062500j,
            -0.062500, +0.062500, +0.062500, -0.062500j, -0.093750, +0.062500j,
            -0.062500, -0.062500j, -0.062500, +0.093750j, +0.093750j,
            +0.062500j, +0.093750, -0.062500, -0.062500, -0.093750j, -0.062500j
        ]

        circ_vec = [
            build_circuit('X_1 Y_2 X_3 Y_4'),
            build_circuit('X_1 Y_2 X_3 X_4'),
            build_circuit('X_1 Y_2 Y_3 X_4'),
            build_circuit('X_1 X_2 X_3 Y_4'),
            build_circuit('X_1 X_2 X_3 X_4'),
            build_circuit('X_1 X_2 Y_3 X_4'),
            build_circuit('Y_2 X_3 X_4 Z_5 X_6'),
            build_circuit('Y_1 Y_2 Y_3 Y_4'),
            build_circuit('Y_1 X_2 X_3 Y_4'),
            build_circuit('Y_1 X_2 X_3 X_4'),
            build_circuit('Y_1 Y_2 X_3 X_4'),
            build_circuit('X_2 X_3 X_4 Z_5 X_6'),
            build_circuit('Y_1 X_2 Y_3 Y_4'),
            build_circuit('X_2 Y_3 Y_4 Z_5 Y_6'),
            build_circuit('X_2 Y_3 X_4 Z_5 X_6'),
            build_circuit('X_2 Y_3 Y_4 Z_5 X_6'),
            build_circuit('X_2 X_3 Y_4 Z_5 Y_6'),
            build_circuit('Y_2 Y_3 X_4 Z_5 X_6'),
            build_circuit('X_2 X_3 Y_4 Z_5 X_6'),
            build_circuit('Y_1 X_2 Y_3 X_4'),
            build_circuit('Y_2 Y_3 X_4 Z_5 Y_6'),
            build_circuit('Y_2 X_3 X_4 Z_5 Y_6'),
            build_circuit('X_2 X_3 X_4 Z_5 Y_6'),
            build_circuit('X_2 Y_3 X_4 Z_5 Y_6'),
            build_circuit('Y_1 Y_2 Y_3 X_4'),
            build_circuit('Y_1 Y_2 X_3 Y_4'),
            build_circuit('Y_2 Y_3 Y_4 Z_5 X_6'),
            build_circuit('X_1 X_2 Y_3 Y_4'),
            build_circuit('Y_2 Y_3 Y_4 Z_5 Y_6'),
            build_circuit('Y_2 X_3 Y_4 Z_5 X_6'),
            build_circuit('X_1 Y_2 Y_3 Y_4'),
            build_circuit('Y_2 X_3 Y_4 Z_5 Y_6')
        ]

        correct_op = QubitOperator()
        for coeff, circ in zip(coeff_vec, circ_vec):
            correct_op.add(coeff, circ)

        # Test qforte construction
        a1 = SQOperator()
        a1.add(1.00, [2, 3], [4, 6])
        a1.add(+1.50, [1, 2], [3, 4])
        print(a1.str(), '\n')
        aop = a1.jw_transform()
        print(aop.str(), '\n')
        assert aop.check_op_equivalence(correct_op, True) is True
コード例 #12
0
    def test_circ_op_print(self):

        # initialize empty circuit
        circ1 = Circuit()
        # add (Z1 H2 Y4 X4) Pauli string
        # note: the rightmost gate is applied first
        circ1.add(gate('X', 4))
        circ1.add(gate('Y', 4))
        circ1.add(gate('H', 2))
        circ1.add(gate('Z', 1))

        # test built-in print function
        out = str(circ1)
        assert out == '[Z1 H2 Y4 X4]'

        # test smart_print function
        with patch('sys.stdout', new=StringIO()) as fake_out:
            smart_print(circ1)
            assert fake_out.getvalue(
            ) == '\n Quantum circuit:\n(Z1 H2 Y4 X4) |Ψ>\n'

        # initialize empty circuit
        circ2 = Circuit()
        # add (H1 Y2 S3 I4) Pauli string
        # note: the rightmost gate is applied first
        circ2.add(gate('I', 4))
        circ2.add(gate('S', 3))
        circ2.add(gate('Y', 2))
        circ2.add(gate('H', 1))

        # initialize empty circuit
        circ3 = Circuit()
        # add (X1 Y2 H3 Z4) Pauli string
        # note: the rightmost gate is applied first
        circ3.add(gate('Z', 4))
        circ3.add(gate('H', 3))
        circ3.add(gate('Y', 2))
        circ3.add(gate('X', 1))

        # initialize empty QubitOperator
        q_op = QubitOperator()

        # add u1*circ1 + u2*circ2 + u3*circ3
        u1 = 0.5 + 0.1j
        u2 = -0.5j
        u3 = +0.3

        q_op.add(u1, circ1)
        q_op.add(u2, circ2)
        q_op.add(u3, circ3)

        # test built-in print function
        out = str(q_op)
        assert out == '+0.500000 +0.100000i[Z1 H2 Y4 X4]\n'\
                         '-0.500000j[H1 Y2 S3 I4]\n'\
                         '+0.300000[X1 Y2 H3 Z4]'

        # test smart_print function
        with patch('sys.stdout', new=StringIO()) as fake_out:
            smart_print(q_op)
            assert fake_out.getvalue() == '\n Quantum operator:\n(0.5+0.1j) (Z1 H2 Y4 X4) |Ψ>\n'\
                             '+ (-0-0.5j) (H1 Y2 S3 I4) |Ψ>\n'\
                             '+ (0.3+0j) (X1 Y2 H3 Z4) |Ψ>\n'