コード例 #1
0
def test_tfim_hamiltonian_from_symbols(nqubits, hamtype, calcterms):
    """Check creating TFIM Hamiltonian using sympy."""
    if hamtype == "symbolic":
        from qibo.symbols import X, Z
        h = 0.5
        symham = sum(Z(i) * Z(i + 1) for i in range(nqubits - 1))
        symham += Z(0) * Z(nqubits - 1)
        symham += h * sum(X(i) for i in range(nqubits))
        ham = hamiltonians.SymbolicHamiltonian(-symham)
    else:
        h = 0.5
        z_symbols = sympy.symbols(" ".join((f"Z{i}" for i in range(nqubits))))
        x_symbols = sympy.symbols(" ".join((f"X{i}" for i in range(nqubits))))

        symham = sum(z_symbols[i] * z_symbols[i + 1] for i in range(nqubits - 1))
        symham += z_symbols[0] * z_symbols[-1]
        symham += h * sum(x_symbols)
        symmap = {z: (i, matrices.Z) for i, z in enumerate(z_symbols)}
        symmap.update({x: (i, matrices.X) for i, x in enumerate(x_symbols)})
        ham = hamiltonians.Hamiltonian.from_symbolic(-symham, symmap)

    if calcterms:
        _ = ham.terms
    final_matrix = ham.matrix
    target_matrix = hamiltonians.TFIM(nqubits, h=h).matrix
    K.assert_allclose(final_matrix, target_matrix)
コード例 #2
0
def symbolic_tfim(nqubits, h=1.0):
    """Constructs symbolic Hamiltonian for TFIM."""
    from qibo.symbols import Z, X
    sham = -sum(Z(i) * Z(i + 1) for i in range(nqubits - 1))
    sham -= Z(0) * Z(nqubits - 1)
    sham -= h * sum(X(i) for i in range(nqubits))
    return sham
コード例 #3
0
def tsp_phaser(distance_matrix):
    num_cities = distance_matrix.shape[0]
    two_to_one = calculate_two_to_one(num_cities)
    form = 0
    for i in range(num_cities):
        for u in range(num_cities):
            for v in range(num_cities):
                if u != v:
                    form += distance_matrix[u, v] * Z(int(two_to_one[u, i]))* Z(
                        int(two_to_one[v, (i + 1) % num_cities]))
    ham = SymbolicHamiltonian(form)
    return ham
コード例 #4
0
def test_symbolicxxz_hamiltonian_to_dense(backend, nqubits, calcterms):
    from qibo.symbols import X, Y, Z
    sham = sum(X(i) * X(i + 1) for i in range(nqubits - 1))
    sham += sum(Y(i) * Y(i + 1) for i in range(nqubits - 1))
    sham += 0.5 * sum(Z(i) * Z(i + 1) for i in range(nqubits - 1))
    sham += X(0) * X(nqubits - 1) + Y(0) * Y(nqubits -
                                             1) + 0.5 * Z(0) * Z(nqubits - 1)
    final_ham = hamiltonians.SymbolicHamiltonian(sham)
    target_ham = hamiltonians.XXZ(nqubits)
    if calcterms:
        _ = final_ham.terms
    K.assert_allclose(final_ham.matrix, target_ham.matrix, atol=1e-15)
コード例 #5
0
def test_hamiltonian_with_identity_symbol(calcterms):
    """Check creating Hamiltonian from expression which contains the identity symbol."""
    from qibo.symbols import I, X, Y, Z
    symham = X(0) * I(1) * Z(2) + 0.5 * Y(0) * Z(1) * I(3) + Z(0) * I(1) * X(2)
    ham = hamiltonians.SymbolicHamiltonian(symham)
    
    if calcterms:
        _ = ham.terms
    final_matrix = ham.matrix
    target_matrix = np.kron(np.kron(matrices.X, matrices.I),
                            np.kron(matrices.Z, matrices.I))
    target_matrix += 0.5 * np.kron(np.kron(matrices.Y, matrices.Z),
                                   np.kron(matrices.I, matrices.I))
    target_matrix += np.kron(np.kron(matrices.Z, matrices.I),
                             np.kron(matrices.X, matrices.I))
    K.assert_allclose(final_matrix, target_matrix)
コード例 #6
0
def test_symbolic_term_merge(backend):
    """Test merging ``SymbolicTerm`` to ``HamiltonianTerm``."""
    from qibo.symbols import X, Z
    matrix = np.random.random((4, 4))
    term1 = terms.HamiltonianTerm(matrix, 0, 1)
    term2 = terms.SymbolicTerm(1, X(0) * Z(1))
    term = term1.merge(term2)
    target_matrix = matrix + np.kron(matrices.X, matrices.Z)
    K.assert_allclose(term.matrix, target_matrix)
コード例 #7
0
def test_symbolic_term_matrix(backend):
    """Test matrix calculation of ``SymbolicTerm``."""
    from qibo.symbols import X, Y, Z
    expression = X(0) * Y(1) * Z(2) * X(1)
    term = terms.SymbolicTerm(2, expression)
    assert term.target_qubits == (0, 1, 2)
    target_matrix = np.kron(matrices.X, matrices.Y @ matrices.X)
    target_matrix = 2 * np.kron(target_matrix, matrices.Z)
    K.assert_allclose(term.matrix, target_matrix)
コード例 #8
0
def test_symbolic_term_mul(backend):
    """Test multiplying scalar to ``SymbolicTerm``."""
    from qibo.symbols import X, Y, Z
    expression = Y(2) * Z(3) * X(2) * X(3)
    term = terms.SymbolicTerm(1, expression)
    assert term.target_qubits == (2, 3)
    target_matrix = np.kron(matrices.Y @ matrices.X, matrices.Z @ matrices.X)
    K.assert_allclose(term.matrix, target_matrix)
    K.assert_allclose((2 * term).matrix, 2 * target_matrix)
    K.assert_allclose((term * 3).matrix, 3 * target_matrix)
コード例 #9
0
def test_symbolic_term_with_power_creation():
    """Test creating ``SymbolicTerm`` from sympy expression that contains powers."""
    from qibo.symbols import X, Z
    expression = X(0)**4 * Z(1)**2 * X(2)
    term = terms.SymbolicTerm(2, expression)
    assert term.target_qubits == (0, 1, 2)
    assert len(term.matrix_map) == 3
    assert term.coefficient == 2
    K.assert_allclose(term.matrix_map.get(0), 4 * [matrices.X])
    K.assert_allclose(term.matrix_map.get(1), 2 * [matrices.Z])
    K.assert_allclose(term.matrix_map.get(2), [matrices.X])
コード例 #10
0
def test_three_qubit_term_hamiltonian_from_symbols(hamtype, calcterms):
    """Check creating Hamiltonian with three-qubit interaction using sympy."""
    if hamtype == "symbolic":
        from qibo.symbols import X, Y, Z
        symham = X(0) * Y(1) * Z(2) + 0.5 * Y(0) * Z(1) * X(3) + Z(0) * X(2)
        symham += Y(2) + 1.5 * Z(1) - 2 - 3 * X(1) * Y(3)
        ham = hamiltonians.SymbolicHamiltonian(symham)
    else:
        x_symbols = sympy.symbols(" ".join((f"X{i}" for i in range(4))))
        y_symbols = sympy.symbols(" ".join((f"Y{i}" for i in range(4))))
        z_symbols = sympy.symbols(" ".join((f"Z{i}" for i in range(4))))
        symmap = {x: (i, matrices.X) for i, x in enumerate(x_symbols)}
        symmap.update({x: (i, matrices.Y) for i, x in enumerate(y_symbols)})
        symmap.update({x: (i, matrices.Z) for i, x in enumerate(z_symbols)})

        symham = x_symbols[0] * y_symbols[1] * z_symbols[2]
        symham += 0.5 * y_symbols[0] * z_symbols[1] * x_symbols[3]
        symham += z_symbols[0] * x_symbols[2]
        symham += -3 * x_symbols[1] * y_symbols[3]
        symham += y_symbols[2]
        symham += 1.5 * z_symbols[1]
        symham -= 2
        ham = hamiltonians.Hamiltonian.from_symbolic(symham, symmap)

    if calcterms:
        _ = ham.terms
    final_matrix = ham.matrix
    target_matrix = np.kron(np.kron(matrices.X, matrices.Y),
                            np.kron(matrices.Z, matrices.I))
    target_matrix += 0.5 * np.kron(np.kron(matrices.Y, matrices.Z),
                                   np.kron(matrices.I, matrices.X))
    target_matrix += np.kron(np.kron(matrices.Z, matrices.I),
                             np.kron(matrices.X, matrices.I))
    target_matrix += -3 * np.kron(np.kron(matrices.I, matrices.X),
                             np.kron(matrices.I, matrices.Y))
    target_matrix += np.kron(np.kron(matrices.I, matrices.I),
                             np.kron(matrices.Y, matrices.I))
    target_matrix += 1.5 * np.kron(np.kron(matrices.I, matrices.Z),
                                   np.kron(matrices.I, matrices.I))
    target_matrix -= 2 * np.eye(2**4, dtype=target_matrix.dtype)
    K.assert_allclose(final_matrix, target_matrix)
コード例 #11
0
def test_term_group_to_term(backend):
    """Test ``GroupTerm.term`` property."""
    from qibo.symbols import X, Z
    matrix = np.random.random((8, 8))
    term1 = terms.HamiltonianTerm(matrix, 0, 1, 3)
    term2 = terms.SymbolicTerm(1, X(0) * Z(3))
    term3 = terms.SymbolicTerm(2, X(1))
    group = terms.TermGroup(term1)
    group.append(term2)
    group.append(term3)
    matrix2 = np.kron(np.kron(matrices.X, np.eye(2)), matrices.Z)
    matrix3 = np.kron(np.kron(np.eye(2), matrices.X), np.eye(2))
    target_matrix = matrix + matrix2 + 2 * matrix3
    K.assert_allclose(group.term.matrix, target_matrix)
コード例 #12
0
def test_symbolic_term_call(backend, density_matrix):
    """Test applying ``SymbolicTerm`` to state."""
    from qibo.symbols import X, Y, Z
    expression = Z(0) * X(1) * Y(2)
    term = terms.SymbolicTerm(2, expression)
    matrixlist = [
        np.kron(matrices.Z, np.eye(4)),
        np.kron(np.kron(np.eye(2), matrices.X), np.eye(2)),
        np.kron(np.eye(4), matrices.Y)
    ]
    initial_state = random_density_matrix(
        3) if density_matrix else random_state(3)
    final_state = term(np.copy(initial_state), density_matrix=density_matrix)
    target_state = 2 * np.copy(initial_state)
    for matrix in matrixlist:
        target_state = matrix @ target_state
    K.assert_allclose(final_state, target_state)
コード例 #13
0
def test_from_symbolic_application_hamiltonian(calcterms):
    """Check ``from_symbolic`` for a specific four-qubit Hamiltonian."""
    z1, z2, z3, z4 = sympy.symbols("z1 z2 z3 z4")
    symmap = {z: (i, matrices.Z) for i, z in enumerate([z1, z2, z3, z4])}
    symham = (z1 * z2 - 0.5 * z1 * z3 + 2 * z2 * z3 + 0.35 * z2
              + 0.25 * z3 * z4 + 0.5 * z3 + z4 - z1)
    # Check that Trotter dense matrix agrees will full Hamiltonian matrix
    fham = hamiltonians.Hamiltonian.from_symbolic(symham, symmap)
    from qibo.symbols import Z
    symham = (Z(0) * Z(1) - 0.5 * Z(0) * Z(2) + 2 * Z(1) * Z(2) + 0.35 * Z(1)
              + 0.25 * Z(2) * Z(3) + 0.5 * Z(2) + Z(3) - Z(0))
    sham = hamiltonians.SymbolicHamiltonian(symham)
    if calcterms:
        _ = sham.terms
    K.assert_allclose(sham.matrix, fham.matrix)