コード例 #1
0
    def test_all_missing_data(self):
        mdc = NumericMetadataColumn(pd.Series(
            [np.nan, np.nan, np.nan], name='col1',
            index=pd.Index(['a', 'b', 'c'], name='id')))

        obs = mdc.to_series()

        exp = pd.Series(
            [np.nan, np.nan, np.nan], name='col1',
            index=pd.Index(['a', 'b', 'c'], name='id'))

        pdt.assert_series_equal(obs, exp)
        self.assertEqual(obs.dtype, np.float64)
コード例 #2
0
    def test_all_missing_data(self):
        mdc = NumericMetadataColumn(
            pd.Series([np.nan, np.nan, np.nan],
                      name='col1',
                      index=pd.Index(['a', 'b', 'c'], name='id')))

        obs = mdc.to_series()

        exp = pd.Series([np.nan, np.nan, np.nan],
                        name='col1',
                        index=pd.Index(['a', 'b', 'c'], name='id'))

        pdt.assert_series_equal(obs, exp)
        self.assertEqual(obs.dtype, np.float64)
コード例 #3
0
    def test_supported_dtype_float(self):
        series = pd.Series([1.23, np.nan, 4.56, -7.891],
                           name='my column',
                           index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
        mdc = NumericMetadataColumn(series)

        self.assertEqual(mdc.id_count, 4)
        self.assertEqual(mdc.id_header, 'id')
        self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
        self.assertEqual(mdc.name, 'my column')

        obs_series = mdc.to_series()
        pdt.assert_series_equal(obs_series, series)
        self.assertEqual(obs_series.dtype, np.float64)
コード例 #4
0
    def test_supported_dtype_float(self):
        series = pd.Series(
            [1.23, np.nan, 4.56, -7.891], name='my column',
            index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
        mdc = NumericMetadataColumn(series)

        self.assertEqual(mdc.id_count, 4)
        self.assertEqual(mdc.id_header, 'id')
        self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
        self.assertEqual(mdc.name, 'my column')

        obs_series = mdc.to_series()
        pdt.assert_series_equal(obs_series, series)
        self.assertEqual(obs_series.dtype, np.float64)
コード例 #5
0
    def test_missing_data_normalized(self):
        # Different missing data representations should be normalized to np.nan
        mdc = NumericMetadataColumn(pd.Series(
            [np.nan, 4.2, float('nan'), -5.678], name='col1',
            index=pd.Index(['a', 'b', 'c', 'd'], name='id')))

        obs = mdc.to_series()

        exp = pd.Series(
            [np.nan, 4.2, np.nan, -5.678], name='col1',
            index=pd.Index(['a', 'b', 'c', 'd'], name='id'))

        pdt.assert_series_equal(obs, exp)
        self.assertEqual(obs.dtype, np.float64)
        self.assertTrue(np.isnan(obs['a']))
        self.assertTrue(np.isnan(obs['c']))
コード例 #6
0
 def test_unsupported_dtype(self):
     with self.assertRaisesRegex(
             TypeError, "NumericMetadataColumn 'col1' does not support"
             ".*Series.*dtype.*bool"):
         NumericMetadataColumn(
             pd.Series([True, False, True],
                       name='col1',
                       index=pd.Index(['a', 'b', 'c'], name='id')))
コード例 #7
0
    def test_missing_data_normalized(self):
        # Different missing data representations should be normalized to np.nan
        mdc = NumericMetadataColumn(
            pd.Series([np.nan, 4.2, float('nan'), -5.678],
                      name='col1',
                      index=pd.Index(['a', 'b', 'c', 'd'], name='id')))

        obs = mdc.to_series()

        exp = pd.Series([np.nan, 4.2, np.nan, -5.678],
                        name='col1',
                        index=pd.Index(['a', 'b', 'c', 'd'], name='id'))

        pdt.assert_series_equal(obs, exp)
        self.assertEqual(obs.dtype, np.float64)
        self.assertTrue(np.isnan(obs['a']))
        self.assertTrue(np.isnan(obs['c']))
コード例 #8
0
 def test_infinity_value(self):
     with self.assertRaisesRegex(
             ValueError, "NumericMetadataColumn.*positive or negative "
             "infinity.*column 'col1'"):
         NumericMetadataColumn(
             pd.Series([42, float('+inf'), 4.3],
                       name='col1',
                       index=pd.Index(['a', 'b', 'c'], name='id')))
コード例 #9
0
    def test_numeric_metadata_column(self):
        mdc = NumericMetadataColumn(
            pd.Series([1e-15, 42.50, -999.0],
                      name='numeric-column',
                      index=pd.Index(['id1', 'id2', 'id3'], name='#OTU ID')))

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = ("#OTU ID\tnumeric-column\n"
               "#q2:types\tnumeric\n"
               "id1\t1e-15\n"
               "id2\t42.5\n"
               "id3\t-999\n")

        self.assertEqual(obs, exp)
コード例 #10
0
    def test_wrong_obj(self):
        with self.assertRaisesRegex(
                TypeError, 'NumericMetadataColumn constructor.*pandas.Series'):
            NumericMetadataColumn(pd.DataFrame([[1, 2, 3]]))

        with self.assertRaisesRegex(
                TypeError,
                'CategoricalMetadataColumn constructor.*pandas.Series'):
            CategoricalMetadataColumn({})
コード例 #11
0
    def test_supported_dtype_int(self):
        series = pd.Series([0, 1, 42, -2],
                           name='my column',
                           index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
        mdc = NumericMetadataColumn(series)

        self.assertEqual(mdc.id_count, 4)
        self.assertEqual(mdc.id_header, 'id')
        self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
        self.assertEqual(mdc.name, 'my column')

        obs_series = mdc.to_series()

        exp_series = pd.Series([0.0, 1.0, 42.0, -2.0],
                               name='my column',
                               index=pd.Index(['a', 'b', 'c', 'd'], name='id'))

        pdt.assert_series_equal(obs_series, exp_series)
        self.assertEqual(obs_series.dtype, np.float64)
コード例 #12
0
ファイル: test_io.py プロジェクト: thermokarst/qiime2
    def test_numeric_metadata_column(self):
        mdc = NumericMetadataColumn(pd.Series(
            [1e-15, 42.50, -999.0], name='numeric-column',
            index=pd.Index(['id1', 'id2', 'id3'], name='#OTU ID')))

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "#OTU ID\tnumeric-column\n"
            "#q2:types\tnumeric\n"
            "id1\t1e-15\n"
            "id2\t42.5\n"
            "id3\t-999\n"
        )

        self.assertEqual(obs, exp)
コード例 #13
0
    def test_supported_dtype_int(self):
        series = pd.Series(
            [0, 1, 42, -2], name='my column',
            index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
        mdc = NumericMetadataColumn(series)

        self.assertEqual(mdc.id_count, 4)
        self.assertEqual(mdc.id_header, 'id')
        self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
        self.assertEqual(mdc.name, 'my column')

        obs_series = mdc.to_series()

        exp_series = pd.Series(
            [0.0, 1.0, 42.0, -2.0], name='my column',
            index=pd.Index(['a', 'b', 'c', 'd'], name='id'))

        pdt.assert_series_equal(obs_series, exp_series)
        self.assertEqual(obs_series.dtype, np.float64)
コード例 #14
0
    def test_type_mismatch(self):
        dummy = DummyMetadataColumn(
            pd.Series([1.0, 2.0, 3.0],
                      name='col1',
                      index=pd.Index(['id1', 'id2', 'id3'], name='id')))
        numeric = NumericMetadataColumn(
            pd.Series([1.0, 2.0, 3.0],
                      name='col1',
                      index=pd.Index(['id1', 'id2', 'id3'], name='id')))
        categorical = CategoricalMetadataColumn(
            pd.Series(['a', 'b', 'c'],
                      name='col1',
                      index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        self.assertReallyNotEqual(dummy, numeric)
        self.assertReallyNotEqual(dummy, categorical)