コード例 #1
0
 def test_vqe_caching_direct(self, batch_mode=True):
     backend = BasicAer.get_backend('statevector_simulator')
     num_qubits = self.algo_input.qubit_op.num_qubits
     init_state = Zero(num_qubits)
     var_form = RY(num_qubits, 3, initial_state=init_state)
     optimizer = L_BFGS_B()
     algo = VQE(self.algo_input.qubit_op,
                var_form,
                optimizer,
                'matrix',
                batch_mode=batch_mode)
     quantum_instance_caching = QuantumInstance(backend,
                                                circuit_caching=True,
                                                skip_qobj_deepcopy=True,
                                                skip_qobj_validation=True)
     result_caching = algo.run(quantum_instance_caching)
     self.assertLessEqual(quantum_instance_caching.circuit_cache.misses, 0)
     self.assertAlmostEqual(
         self.reference_vqe_result['statevector_simulator']['energy'],
         result_caching['energy'])
     speedup_check = 3
     self.log.info(
         result_caching['eval_time'],
         self.reference_vqe_result['statevector_simulator']['eval_time'] /
         speedup_check)
コード例 #2
0
    def test_saving_and_loading(self):
        backend = BasicAer.get_backend('statevector_simulator')
        num_qubits = self.algo_input.qubit_op.num_qubits
        init_state = Zero(num_qubits)
        var_form = RY(num_qubits, 3, initial_state=init_state)
        optimizer = L_BFGS_B()
        algo = VQE(self.algo_input.qubit_op, var_form, optimizer, 'matrix')

        fd, cache_tmp_file = tempfile.mkstemp(suffix='.inp')
        os.close(fd)

        quantum_instance_caching = QuantumInstance(backend,
                                                   circuit_caching=True,
                                                   cache_file=cache_tmp_file,
                                                   skip_qobj_deepcopy=True,
                                                   skip_qobj_validation=True)
        algo.run(quantum_instance_caching)
        self.assertLessEqual(quantum_instance_caching.circuit_cache.misses, 0)

        is_file_exist = os.path.exists(cache_tmp_file)
        self.assertTrue(is_file_exist, "Does not store content successfully.")

        circuit_cache_new = CircuitCache(skip_qobj_deepcopy=True,
                                         cache_file=cache_tmp_file)
        self.assertEqual(quantum_instance_caching.circuit_cache.mappings,
                         circuit_cache_new.mappings)
        self.assertLessEqual(circuit_cache_new.misses, 0)

        if is_file_exist:
            os.remove(cache_tmp_file)
コード例 #3
0
 def test_vqe_caching_direct(self, max_evals_grouped):
     self._build_refrence_result(backends=['statevector_simulator'])
     backend = BasicAer.get_backend('statevector_simulator')
     num_qubits = self.algo_input.qubit_op.num_qubits
     init_state = Zero(num_qubits)
     var_form = RY(num_qubits, 3, initial_state=init_state)
     optimizer = L_BFGS_B()
     algo = VQE(self.algo_input.qubit_op,
                var_form,
                optimizer,
                max_evals_grouped=max_evals_grouped)
     quantum_instance_caching = QuantumInstance(
         backend,
         circuit_caching=True,
         skip_qobj_deepcopy=True,
         skip_qobj_validation=True,
         optimization_level=self.optimization_level)
     result_caching = algo.run(quantum_instance_caching)
     self.assertLessEqual(quantum_instance_caching.circuit_cache.misses, 0)
     self.assertAlmostEqual(
         self.reference_vqe_result['statevector_simulator']['energy'],
         result_caching['energy'])
     speedup_min = 3
     speedup = result_caching['eval_time'] / self.reference_vqe_result[
         'statevector_simulator']['eval_time']
     self.assertLess(speedup, speedup_min)
コード例 #4
0
    def test_tapered_op(self):
        """ tapered op test """
        tapered_ops = self.z2_symmetries.taper(self.qubit_op)
        smallest_idx = 0  # Prior knowledge of which tapered_op has ground state
        the_tapered_op = tapered_ops[smallest_idx]

        optimizer = SLSQP(maxiter=1000)

        init_state = HartreeFock(num_qubits=the_tapered_op.num_qubits,
                                 num_orbitals=self.core._molecule_info['num_orbitals'],
                                 qubit_mapping=self.core._qubit_mapping,
                                 two_qubit_reduction=self.core._two_qubit_reduction,
                                 num_particles=self.core._molecule_info['num_particles'],
                                 sq_list=the_tapered_op.z2_symmetries.sq_list)

        var_form = UCCSD(num_qubits=the_tapered_op.num_qubits, depth=1,
                         num_orbitals=self.core._molecule_info['num_orbitals'],
                         num_particles=self.core._molecule_info['num_particles'],
                         active_occupied=None, active_unoccupied=None,
                         initial_state=init_state,
                         qubit_mapping=self.core._qubit_mapping,
                         two_qubit_reduction=self.core._two_qubit_reduction,
                         num_time_slices=1,
                         z2_symmetries=the_tapered_op.z2_symmetries)

        algo = VQE(the_tapered_op, var_form, optimizer)

        backend = BasicAer.get_backend('statevector_simulator')
        quantum_instance = QuantumInstance(backend=backend)

        algo_result = algo.run(quantum_instance)

        _, result = self.core.process_algorithm_result(algo_result)

        self.assertAlmostEqual(result['energy'], self.reference_energy, places=6)
コード例 #5
0
    def test_saving_and_loading_e2e(self):
        backend = BasicAer.get_backend('statevector_simulator')
        num_qubits = self.algo_input.qubit_op.num_qubits
        init_state = Zero(num_qubits)
        var_form = RY(num_qubits, 1, initial_state=init_state)
        optimizer = L_BFGS_B(maxiter=10)
        algo = VQE(self.algo_input.qubit_op, var_form, optimizer)

        with tempfile.NamedTemporaryFile(suffix='.inp',
                                         delete=True) as cache_tmp_file:
            cache_tmp_file_name = cache_tmp_file.name
            quantum_instance_caching = QuantumInstance(
                backend,
                circuit_caching=True,
                cache_file=cache_tmp_file_name,
                skip_qobj_deepcopy=True,
                skip_qobj_validation=True,
                optimization_level=self.optimization_level)
            algo.run(quantum_instance_caching)
            self.assertLessEqual(quantum_instance_caching.circuit_cache.misses,
                                 0)

            is_file_exist = os.path.exists(cache_tmp_file_name)
            self.assertTrue(is_file_exist,
                            "Does not store content successfully.")

            circuit_cache_new = CircuitCache(skip_qobj_deepcopy=True,
                                             cache_file=cache_tmp_file_name)
            self.assertEqual(quantum_instance_caching.circuit_cache.mappings,
                             circuit_cache_new.mappings)
            self.assertLessEqual(circuit_cache_new.misses, 0)
コード例 #6
0
    def test_end2end_h2(self, name, optimizer, backend, shots):
        """ end to end h2 """
        del name  # unused
        if optimizer == 'COBYLA':
            optimizer = COBYLA()
            optimizer.set_options(maxiter=1000)
        elif optimizer == 'SPSA':
            optimizer = SPSA(max_trials=2000)

        ryrz = RYRZ(self.qubit_op.num_qubits, depth=3, entanglement='full')
        vqe = VQE(self.qubit_op, ryrz, optimizer, aux_operators=self.aux_ops)
        quantum_instance = QuantumInstance(backend, shots=shots)
        results = vqe.run(quantum_instance)
        self.assertAlmostEqual(results['energy'], self.reference_energy, places=4)
コード例 #7
0
    def test_end2end_h2(self, name, optimizer, backend, mode, shots):

        if optimizer == 'COBYLA':
            optimizer = COBYLA()
            optimizer.set_options(maxiter=1000)
        elif optimizer == 'SPSA':
            optimizer = SPSA(max_trials=2000)

        ryrz = RYRZ(self.algo_input.qubit_op.num_qubits, depth=3, entanglement='full')
        vqe = VQE(self.algo_input.qubit_op, ryrz, optimizer, mode, aux_operators=self.algo_input.aux_ops)
        run_config = RunConfig(shots=shots, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend, run_config)
        results = vqe.run(quantum_instance)
        self.assertAlmostEqual(results['energy'], self.reference_energy, places=4)
コード例 #8
0
    def test_tapered_op(self):
        # set_qiskit_chemistry_logging(logging.DEBUG)
        tapered_ops = []
        for coeff in itertools.product([1, -1], repeat=len(self.sq_list)):
            tapered_op = Operator.qubit_tapering(self.qubit_op, self.cliffords,
                                                 self.sq_list, list(coeff))
            tapered_ops.append((list(coeff), tapered_op))

        smallest_idx = 0  # Prior knowledge of which tapered_op has ground state
        the_tapered_op = tapered_ops[smallest_idx][1]
        the_coeff = tapered_ops[smallest_idx][0]

        optimizer = SLSQP(maxiter=1000)

        init_state = HartreeFock(
            num_qubits=the_tapered_op.num_qubits,
            num_orbitals=self.core._molecule_info['num_orbitals'],
            qubit_mapping=self.core._qubit_mapping,
            two_qubit_reduction=self.core._two_qubit_reduction,
            num_particles=self.core._molecule_info['num_particles'],
            sq_list=self.sq_list)

        var_form = UCCSD(
            num_qubits=the_tapered_op.num_qubits,
            depth=1,
            num_orbitals=self.core._molecule_info['num_orbitals'],
            num_particles=self.core._molecule_info['num_particles'],
            active_occupied=None,
            active_unoccupied=None,
            initial_state=init_state,
            qubit_mapping=self.core._qubit_mapping,
            two_qubit_reduction=self.core._two_qubit_reduction,
            num_time_slices=1,
            cliffords=self.cliffords,
            sq_list=self.sq_list,
            tapering_values=the_coeff,
            symmetries=self.symmetries)

        algo = VQE(the_tapered_op, var_form, optimizer, 'matrix')

        backend = BasicAer.get_backend('statevector_simulator')
        quantum_instance = QuantumInstance(backend=backend)

        algo_result = algo.run(quantum_instance)

        lines, result = self.core.process_algorithm_result(algo_result)

        self.assertAlmostEqual(result['energy'],
                               self.reference_energy,
                               places=6)
コード例 #9
0
 def test_vqe_caching_direct(self, batch_mode):
     backend = get_aer_backend('statevector_simulator')
     num_qubits = self.algo_input.qubit_op.num_qubits
     init_state = Zero(num_qubits)
     var_form = RY(num_qubits, 3, initial_state=init_state)
     optimizer = L_BFGS_B()
     algo = VQE(self.algo_input.qubit_op,
                var_form,
                optimizer,
                'matrix',
                batch_mode=batch_mode)
     circuit_cache = CircuitCache(skip_qobj_deepcopy=True)
     quantum_instance_caching = QuantumInstance(backend,
                                                circuit_cache=circuit_cache,
                                                skip_qobj_validation=True)
     result_caching = algo.run(quantum_instance_caching)
     self.assertLessEqual(circuit_cache.misses, 1)
     self.assertAlmostEqual(
         self.reference_vqe_result['statevector_simulator']['energy'],
         result_caching['energy'])
コード例 #10
0
    def run_VQE(self):
        """Runs the Variational Quantum Eigensolver (VQE)"""
        qubit_op = self.construct_wpo_operator()
        self.ref = self.exact_eigensolver(qubit_op)

        # Setting initial state, variational form, and backend
        init_state = self.init_state_name(self.num_qubits)
        var_form = self.vf_name(self.num_qubits,
                                depth=self.depth,
                                entanglement='linear',
                                initial_state=init_state)

        # Don't use SPSA if using a noiseless simulator
        if self.device == 'statevector_simulator':
            optimizers = [COBYLA, L_BFGS_B, SLSQP]
        else:
            optimizers = [COBYLA, SPSA]

        print(self.param_table())

        # Initializing empty lists & dicts for storage
        df = pd.DataFrame()
        algos = {}
        algo_results = {}
        for optimizer in optimizers:
            # For reproducibility
            aqua_globals.random_seed = 250
            print(f'\rOptimizer: {optimizer.__name__}          ', end='')

            counts = []
            values = []
            params = []

            def store_intermediate_result(eval_count, parameters, mean, std):
                counts.append(eval_count)
                values.append(mean)
                params.append(parameters)

            # Running VQE
            algo = VQE(qubit_op,
                       var_form,
                       optimizer(),
                       callback=store_intermediate_result)
            quantum_instance = QuantumInstance(backend=self.backend,
                                               shots=self.shots)
            algo_result = algo.run(quantum_instance)

            df[optimizer.__name__] = pd.Series(data=values, index=counts)
            algos[optimizer.__name__] = algo
            algo_results[optimizer.__name__] = algo_result

        print('\rOptimization complete')

        self.algos = algos
        self.result_df = df
        self.algo_results = algo_results
        self.optimizers = algo_results.keys()

        self.results_to_save = {
            'file_path': self.file_path,
            'ref': self.ref,
            'n_qubits': self.num_qubits,
            'n_paulis': self.num_paulis,
            'depth': self.depth,
            'n_shots': self.shots,
            'algo_results': self.algo_results,
            'result_df': self.result_df
        }
コード例 #11
0
for i in range(len(optimizers)):
    aqua_globals.random_seed = 250
    optimizer = optimizers[i]()
    print('\rOptimizer: {}        '.format(type(optimizer).__name__), end='')

    counts = []
    values = []
    params = []

    def store_intermediate_result(eval_count, parameters, mean, std):
        counts.append(eval_count)
        values.append(mean)
        params.append(parameters)

    algo = VQE(qubit_op,
               var_form,
               optimizer,
               callback=store_intermediate_result)
    quantum_instance = QuantumInstance(backend=backend)
    algo_result = algo.run(quantum_instance)
    converge_cnts[i] = np.asarray(counts)
    converge_vals[i] = np.asarray(values)
    param_vals[i] = np.asarray(params)
print('\rOptimization complete      ')

# In[12]:

ee = ExactEigensolver(qubit_op)
result = ee.run()
ref = result['energy']
print('Reference value: {}'.format(ref))
コード例 #12
0
ファイル: tmp.py プロジェクト: paulineollitrault/COBRA
def run_ucc_r12(opt):
    """
    Parameters
    ----------
    * opt dictionary with user and default options/thresholds
    Returns
    -------
    * UCC-R12 ground state energy
        
    """

    import itertools
    import logging
    import numpy as np
    import time
    from datetime import datetime

    import qiskit    
    from qiskit                            import BasicAer,Aer    
    from qiskit.aqua                       import set_qiskit_aqua_logging, QuantumInstance
    from qiskit.aqua.operators             import Z2Symmetries, WeightedPauliOperator
    from qiskit.aqua.algorithms.adaptive   import VQE
    from qiskit.aqua.algorithms.classical  import ExactEigensolver
    from qiskit.aqua.components.optimizers import L_BFGS_B,CG,SPSA,SLSQP, COBYLA

    from qiskit.chemistry.drivers                                      import PySCFDriver, UnitsType, HFMethodType
    from qiskit.chemistry.core                                         import TransformationType, QubitMappingType
    from qiskit.chemistry.aqua_extensions.components.initial_states    import HartreeFock
    from qiskit.chemistry                                              import set_qiskit_chemistry_logging

    # ----- local functions ----- #
    import sys
    sys.path.append('/Users/mario/Documents/GitHub/R12-F12/project_ec/ucc_ec/')
    from qmolecule_ec   import QMolecule_ec,build_parameter_list
    from hamiltonian_ec import Hamiltonian
    from uccsd_ec       import UCCSD

    from davidson import davidson

    #import logging
    #set_qiskit_chemistry_logging(logging.DEBUG)

    logfile = open(opt["logfile"],'w')
    dateTimeObj = datetime.now()
    logfile.write("date and time "+str(dateTimeObj)+"\n")
    logfile.write("\n\n")

    import subprocess
    label = subprocess.check_output(['git','log','-1','--format="%H"']).strip()
    logfile.write("git commit "+str(label)+"\n")
    logfile.write("\n\n")

    qiskit_dict = qiskit.__qiskit_version__
    logfile.write("qiskit version \n")
    for k in qiskit_dict:
    	logfile.write(k+" : "+qiskit_dict[k]+"\n")
    logfile.write("\n\n")

    logfile.write("local run options \n")
    for k in opt:
    	logfile.write(k+" : "+str(opt[k])+"\n")
    logfile.write("\n\n")

    import time
    t0 = time.time()

    if(opt["input_file"] is None):
     # ----- normal molecular calc ----- #
     if(opt["calc_type"].lower() == "rhf"):  hf=HFMethodType.RHF
     if(opt["calc_type"].lower() == "rohf"): hf=HFMethodType.ROHF
     if(opt["calc_type"].lower() == "uhf"):  hf=HFMethodType.UHF
     driver      = PySCFDriver(atom=opt["geometry"],unit=UnitsType.ANGSTROM,charge=opt["charge"],spin=opt["spin"],basis=opt["basis"],hf_method=hf)
     molecule    = driver.run()
     molecule_ec = QMolecule_ec(molecule=molecule,filename=None,logfile=logfile)
    else:
     # ----- custom matrix elements ----- #
     molecule_ec = QMolecule_ec(molecule=None,filename=opt["input_file"],calc=opt["calc_type"],nfreeze=opt["nfreeze"],logfile=logfile)

    molecule_ec.mo_eri_ints_ec = (molecule_ec.mo_eri_ints_ec).transpose((0,1,3,2))

    t1 = time.time()
    logfile.write("classical ES and setup: %f [s] \n" % (t1-t0))
    logfile.write("\n\n")

    core        = Hamiltonian(qubit_mapping=QubitMappingType.PARITY,two_qubit_reduction=True,freeze_core=False)
    qubit_op, _ = core.run(molecule_ec)

    t2 = time.time()
    logfile.write("second-quantized Hamiltonian setup : %f [s] \n" % (t2-t1))
    logfile.write("\n\n")

    logfile.write("Original number of qubits %d \n" % (qubit_op.num_qubits))
    z2_symmetries = Z2Symmetries.find_Z2_symmetries(qubit_op)

    nsym = len(z2_symmetries.sq_paulis)
    the_tapered_op = qubit_op
    sqlist = None
    z2syms = None

    if(nsym>0):

       logfile.write('\nZ2 symmetries found: \n')
       for symm in z2_symmetries.symmetries:
           logfile.write(symm.to_label())
       logfile.write('\nsingle-qubit operators found: \n')
       for sq in z2_symmetries.sq_paulis:
           logfile.write(sq.to_label())
       logfile.write('\nCliffords found: \n')
       for clifford in z2_symmetries.cliffords:
           logfile.write(clifford.print_details())
       logfile.write('\nsingle-qubit list: {} \n'.format(z2_symmetries.sq_list))
       
       tapered_ops = z2_symmetries.taper(qubit_op)
       for tapered_op in tapered_ops:
           logfile.write("Number of qubits of tapered qubit operator: %d \n" % (tapered_op.num_qubits))
       
       t3 = time.time()
       logfile.write("detection of symmetries: %f [s] \n" % (t3-t2))
     
       smallest_eig_value = 99999999999999
       smallest_idx = -1
      
       for idx in range(len(tapered_ops)):
           td0 = time.time()
           from utils import retrieve_SCF_energy
           print("In sector ",idx,len(tapered_ops))
           curr_value = retrieve_SCF_energy(tapered_ops[idx].copy(),core,opt) #,parm_list)
           curr_value = np.abs(curr_value-molecule_ec.hf_energy)
           print("Deviation ",curr_value)
           if curr_value < smallest_eig_value:
              smallest_eig_value = curr_value
              smallest_idx = idx
              if(curr_value<1e-6): break
           td1 = time.time()
           val = curr_value
           logfile.write("Lowest-energy computational basis state of the {}-th tapered operator is %s %f \n" % (str(idx),val))
           logfile.write("HF search time %f: \n" % (td1-td0))
     
       the_tapered_op = tapered_ops[smallest_idx]
       the_coeff = tapered_ops[smallest_idx].z2_symmetries.tapering_values
       logfile.write("{}-th tapered operator, with corresponding symmetry sector of {}".format(smallest_idx, the_coeff))
       logfile.write("\nNumber of qubits in the {}-th tapered operator {}\n\n".format(smallest_idx,the_tapered_op.num_qubits))

       sqlist = the_tapered_op.z2_symmetries.sq_list
       z2syms = the_tapered_op.z2_symmetries

    # ========
    # setup initial state
    # ========

    init_state = HartreeFock(num_qubits=the_tapered_op.num_qubits, num_orbitals=core._molecule_info['num_orbitals'],
                        qubit_mapping=core._qubit_mapping, two_qubit_reduction=core._two_qubit_reduction,
                        num_particles=core._molecule_info['num_particles'],sq_list=sqlist)

    # ---- initial parameter guess 
    init_parm = None
    if(opt["start_pt"].lower()=="file"):
       init_parm = np.loadtxt('vqe.parameters')
    if(opt["var_form"].lower()=="uccsd" and opt["start_pt"].lower()=="ccsd"):
       parm_list    = build_parameter_list(molecule_ec)

    logfile.write("Initial parameters = %d\n" % len(parm_list))
    for mu,p in enumerate(parm_list):
        logfile.write('%d %f\n' % (mu,p))

    if(opt["var_form"].lower()=="uccsd"):
        var_form = UCCSD(num_qubits=the_tapered_op.num_qubits,depth=opt["UCCSD_depth"],
                   num_orbitals=core._molecule_info['num_orbitals'],
                   num_particles=core._molecule_info['num_particles'],
                   active_occupied=opt["UCCSD_active_occupied"], active_unoccupied=opt["UCCSD_active_unoccupied"], initial_state=init_state,
                   qubit_mapping=core._qubit_mapping, two_qubit_reduction=core._two_qubit_reduction,
                   num_time_slices=opt["UCCSD_num_time_slices"],z2_symmetries=z2syms,init_parm=parm_list)

        if(opt["var_form"].lower()=="uccsd" and opt["start_pt"].lower()=="ccsd"):
           nparm,ndepth = len(var_form._mask),var_form._depth
           init_parm    = np.zeros(nparm*ndepth)
           for idp in range(ndepth):
            for ims in range(nparm):
             init_parm[ims+idp*nparm] = parm_list[var_form._mask[ims]]

        logfile.write("Selected parameters = %d\n" % nparm)
        for mu,p in enumerate(var_form._mask):
            logfile.write('%d %f\n' % (p,parm_list[p]))

    elif(opt["var_form"].lower()=="ry"):
        var_form = RY(the_tapered_op.num_qubits,depth=opt["R_depth"],
                   entanglement=opt["R_entanglement"],initial_state=HF_state)
    elif(opt["var_form"].lower()=="ryrz"):
        var_form = RYRZ(the_tapered_op.num_qubits,depth=opt["R_depth"],
                   entanglement=opt["R_entanglement"],initial_state=HF_state)
    elif(opt["var_form"].lower()=="swaprz"):
        var_form = SwapRZ(the_tapered_op.num_qubits,depth=opt["R_depth"],
                   entanglement=opt["R_entanglement"],initial_state=HF_state)
    else:
        print("invalid variational form")
        assert(False)

    # setup optimizer
    if(  opt["optimizer"].lower()=="bfgs"):  optimizer = L_BFGS_B(maxiter=opt["max_eval"])
    elif(opt["optimizer"].lower()=="cg"):    optimizer = CG(maxiter=opt["max_eval"])
    elif(opt["optimizer"].lower()=="slsqp"): optimizer = SLSQP(maxiter=opt["max_eval"])
    elif(opt["optimizer"].lower()=="spsa"):  optimizer = SPSA()
    elif(opt["optimizer"].lower()=="cobyla"): optimizer = COBYLA(maxiter=opt["max_eval"])
    else:                                    print("not coded yet"); assert(False) 

    # set vqe
    if(opt["var_form"].lower()=="uccsd"): algo = VQE(the_tapered_op,var_form,optimizer,initial_point=init_parm)
    else:                                 algo = VQE(the_tapered_op,var_form,optimizer)
    # setup backend
    backend = Aer.get_backend('statevector_simulator')
    quantum_instance = QuantumInstance(backend=backend)

    t0 = time.time()

    algo_result = algo.run(quantum_instance)

    t1 = time.time()

    logfile.write("\nVQE time [s] %f \n\n" % (t1-t0))

    result = core.process_algorithm_result(algo_result)
    for line in result[0]:
        logfile.write(line+"\n")
    
    logfile.write("\nThe parameters for UCCSD are:\n")
    for i,(tc,tq) in enumerate(zip(init_parm,algo_result['opt_params'])):
     logfile.write("%d %f %f \n" % (i,tc,tq))

    if(opt["print_parameters"]):
       par_file = open('vqe.parameters','w')
       for p in algo_result['opt_params']:
        par_file.write("%f \n" % p)
       par_file.close()

    #td0 = time.time()
    #ee = davidson(the_tapered_op,'fci')
    #td1 = time.time()
    #logfile.write("\n\nExact diagonalization, energy: %f \n" % (ee+molecule_ec.nuclear_repulsion_energy+molecule_ec.energy_offset_ec))

    #logfile.write("Davidson FCI time: %f [s] \n" % (td1-td0))
    
    print('============================================================================')
    print('                                      DONE!')
    print('============================================================================')
    

    return 0
コード例 #13
0
var_form = UCCSD(num_qubits=the_tapered_op.num_qubits,
                 depth=1,
                 num_orbitals=core._molecule_info['num_orbitals'],
                 num_particles=core._molecule_info['num_particles'],
                 active_occupied=None,
                 active_unoccupied=None,
                 initial_state=init_state,
                 qubit_mapping=core._qubit_mapping,
                 two_qubit_reduction=core._two_qubit_reduction,
                 num_time_slices=1,
                 z2_symmetries=the_tapered_op.z2_symmetries,
                 shallow_circuit_concat=False)
#                 force_no_tap_excitation=True,
#                 method_doubles='succ',
#                 excitation_type='d',
#                 same_spin_doubles=False)

# set up VQE
algo = VQE(the_tapered_op, var_form, optimizer)

# Choose the backend (use Aer instead of BasicAer)
backend = Aer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend=backend, optimization_level=1)

# run the algorithm
algo_result = algo.run(quantum_instance)

# get the results
_, result = core.process_algorithm_result(algo_result)
print(result)