def test_qsvm_setup_data(self, data_preparation_type): """ QSVM Setup Data test """ ref_kernel_testing = np.array( [[0.1443953, 0.18170069, 0.47479649, 0.14691763], [0.33041779, 0.37663733, 0.02115561, 0.16106199]]) ref_support_vectors = np.array([[2.95309709, 2.51327412], [3.14159265, 4.08407045], [4.08407045, 2.26194671], [4.46106157, 2.38761042]]) backend = BasicAer.get_backend('statevector_simulator') data_preparation = self.data_preparation[data_preparation_type] try: if data_preparation_type == 'wrapped': warnings.filterwarnings('ignore', category=DeprecationWarning) svm = QSVM(data_preparation) if data_preparation_type == 'wrapped': warnings.filterwarnings('always', category=DeprecationWarning) svm.setup_training_data(self.training_data) svm.setup_test_data(self.testing_data) quantum_instance = QuantumInstance( backend, seed_transpiler=self.random_seed, seed_simulator=self.random_seed) result = svm.run(quantum_instance) np.testing.assert_array_almost_equal( result['kernel_matrix_testing'], ref_kernel_testing, decimal=4) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal( result['svm']['support_vectors'], ref_support_vectors, decimal=4) self.assertEqual(result['testing_accuracy'], 0.5) except NameError as ex: self.skipTest(str(ex))
def test_qsvm_multiclass_all_pairs(self, use_circuits): """ QSVM Multiclass All Pairs test """ training_input = {'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [0.49156185, -0.3660534]]), 'C': np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294], [-0.82139073, 0.29941512]])} test_input = {'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [0.06183066, -0.53376975]]), 'C': np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162], [-0.66489165, 0.1181712]])} total_array = np.concatenate((test_input['A'], test_input['B'], test_input['C'])) aqua_globals.random_seed = self.random_seed feature_map = SecondOrderExpansion(feature_dimension=get_feature_dimension(training_input), depth=2, entangler_map=[[0, 1]]) if use_circuits: x = ParameterVector('x', feature_map.feature_dimension) feature_map = feature_map.construct_circuit(x) feature_map.ordered_parameters = list(x) try: svm = QSVM(feature_map, training_input, test_input, total_array, multiclass_extension=AllPairs()) quantum_instance = QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=self.shots, seed_simulator=aqua_globals.random_seed, seed_transpiler=aqua_globals.random_seed) result = svm.run(quantum_instance) self.assertAlmostEqual(result['testing_accuracy'], 0.444444444, places=4) self.assertEqual(result['predicted_classes'], ['A', 'A', 'C', 'A', 'A', 'A', 'A', 'C', 'C']) except NameError as ex: self.skipTest(str(ex))
def test_qsvm_binary_directly(self): ref_kernel_training = np.array([[1., 0.85366667, 0.12341667, 0.36408333], [0.85366667, 1., 0.11141667, 0.45491667], [0.12341667, 0.11141667, 1., 0.667], [0.36408333, 0.45491667, 0.667, 1.]]) ref_kernel_testing = np.array([[0.14316667, 0.18208333, 0.4785, 0.14441667], [0.33608333, 0.3765, 0.02316667, 0.15858333]]) # ref_alpha = np.array([0.36064489, 1.49204209, 0.0264953, 1.82619169]) ref_alpha = np.array([0.34903335, 1.48325498, 0.03074852, 1.80153981]) # ref_bias = np.array([-0.03380763]) ref_bias = np.array([-0.03059226]) ref_support_vectors = np.array([[2.95309709, 2.51327412], [3.14159265, 4.08407045], [4.08407045, 2.26194671], [4.46106157, 2.38761042]]) aqua_globals.random_seed = self.random_seed backend = BasicAer.get_backend('qasm_simulator') num_qubits = 2 feature_map = SecondOrderExpansion(feature_dimension=num_qubits, depth=2, entangler_map=[[0, 1]]) svm = QSVM(feature_map, self.training_data, self.testing_data, None) quantum_instance = QuantumInstance(backend, shots=self.shots, seed=self.random_seed, seed_transpiler=self.random_seed) result = svm.run(quantum_instance) np.testing.assert_array_almost_equal( result['kernel_matrix_training'], ref_kernel_training, decimal=1) np.testing.assert_array_almost_equal( result['kernel_matrix_testing'], ref_kernel_testing, decimal=1) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal( result['svm']['support_vectors'], ref_support_vectors, decimal=4) np.testing.assert_array_almost_equal(result['svm']['alphas'], ref_alpha, decimal=8) np.testing.assert_array_almost_equal(result['svm']['bias'], ref_bias, decimal=8) self.assertEqual(result['testing_accuracy'], 0.5)
def test_binary(self, mode): """Test QSVM on binary classification on BasicAer's QASM simulator.""" if mode == 'circuit': data_preparation = QuantumCircuit(2).compose(self.data_preparation) else: data_preparation = self.data_preparation svm = QSVM(data_preparation, self.training_data, self.testing_data, None, lambda2=0) try: result = svm.run(self.qasm_simulator) np.testing.assert_array_almost_equal( result['kernel_matrix_training'], self.ref_kernel_training, decimal=1) np.testing.assert_array_almost_equal( result['kernel_matrix_testing'], self.ref_kernel_testing['qasm'], decimal=1) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal( result['svm']['support_vectors'], self.ref_support_vectors, decimal=4) np.testing.assert_array_almost_equal(result['svm']['alphas'], self.ref_alpha, decimal=8) np.testing.assert_array_almost_equal(result['svm']['bias'], self.ref_bias, decimal=8) self.assertEqual(result['testing_accuracy'], 0.5) except MissingOptionalLibraryError as ex: self.skipTest(str(ex))
def test_qsvm_setup_data(self): """ QSVM Setup Data test """ ref_kernel_testing = np.array( [[0.1443953, 0.18170069, 0.47479649, 0.14691763], [0.33041779, 0.37663733, 0.02115561, 0.16106199]]) ref_support_vectors = np.array([[2.95309709, 2.51327412], [3.14159265, 4.08407045], [4.08407045, 2.26194671], [4.46106157, 2.38761042]]) backend = BasicAer.get_backend('statevector_simulator') num_qubits = 2 feature_map = SecondOrderExpansion(feature_dimension=num_qubits, depth=2, entangler_map=[[0, 1]]) try: svm = QSVM(feature_map) svm.setup_training_data(self.training_data) svm.setup_test_data(self.testing_data) quantum_instance = QuantumInstance( backend, seed_transpiler=self.random_seed, seed_simulator=self.random_seed) result = svm.run(quantum_instance) np.testing.assert_array_almost_equal( result['kernel_matrix_testing'], ref_kernel_testing, decimal=4) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal( result['svm']['support_vectors'], ref_support_vectors, decimal=4) self.assertEqual(result['testing_accuracy'], 0.5) except NameError as ex: self.skipTest(str(ex))
def test_qsvm_multiclass_error_correcting_code(self, data_preparation_type): """ QSVM Multiclass error Correcting Code test """ training_input = {'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [0.49156185, -0.3660534]]), 'C': np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294], [-0.82139073, 0.29941512]])} test_input = {'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [0.06183066, -0.53376975]]), 'C': np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162], [-0.66489165, 0.1181712]])} total_array = np.concatenate((test_input['A'], test_input['B'], test_input['C'])) aqua_globals.random_seed = self.random_seed data_preparation = self.data_preparation[data_preparation_type] try: if data_preparation_type == 'wrapped': warnings.filterwarnings('ignore', category=DeprecationWarning) svm = QSVM(data_preparation, training_input, test_input, total_array, multiclass_extension=ErrorCorrectingCode(code_size=5)) if data_preparation_type == 'wrapped': warnings.filterwarnings('always', category=DeprecationWarning) quantum_instance = QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=self.shots, seed_simulator=aqua_globals.random_seed, seed_transpiler=aqua_globals.random_seed) result = svm.run(quantum_instance) self.assertAlmostEqual(result['testing_accuracy'], 0.444444444, places=4) self.assertEqual(result['predicted_classes'], ['A', 'A', 'C', 'A', 'A', 'A', 'A', 'C', 'C']) except NameError as ex: self.skipTest(str(ex))
def test_setup_data(self): """Test the setup_*_data methods of QSVM.""" data_preparation = self.data_preparation try: svm = QSVM(data_preparation) svm.setup_training_data(self.training_data) svm.setup_test_data(self.testing_data) result = svm.run(self.statevector_simulator) np.testing.assert_array_almost_equal( result['kernel_matrix_testing'], self.ref_kernel_testing['statevector'], decimal=4) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal( result['svm']['support_vectors'], self.ref_support_vectors, decimal=4) self.assertEqual(result['testing_accuracy'], 0.5) except MissingOptionalLibraryError as ex: self.skipTest(str(ex))
print(class_to_label) seed = 10598 feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2, entanglement='linear') qsvm = QSVM(feature_map, training_input, test_input, datapoints[0]) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=seed, seed_transpiler=seed) result = qsvm.run(quantum_instance) print("testing success ratio: {}".format(result['testing_accuracy'])) print("preduction of datapoints:") print("ground truth: {}".format( map_label_to_class_name(datapoints[1], qsvm.label_to_class))) print("prediction: {}".format(result['predicted_classes'])) print("kernel matrix during the training:") kernel_matrix = result['kernel_matrix_training'] img = plt.imshow(np.asmatrix(kernel_matrix), interpolation='nearest', origin='upper', cmap='bone_r') plt.show()
def test_qsvm_binary_directly_statevector(self): """ QSVM Binary Directly Statevector test """ ref_kernel_testing = np.array( [[0.1443953, 0.18170069, 0.47479649, 0.14691763], [0.33041779, 0.37663733, 0.02115561, 0.16106199]]) ref_support_vectors = np.array([[2.95309709, 2.51327412], [3.14159265, 4.08407045], [4.08407045, 2.26194671], [4.46106157, 2.38761042]]) backend = BasicAer.get_backend('statevector_simulator') num_qubits = 2 feature_map = SecondOrderExpansion(feature_dimension=num_qubits, depth=2, entangler_map=[[0, 1]]) svm = QSVM(feature_map, self.training_data, self.testing_data, None) quantum_instance = QuantumInstance(backend, seed_transpiler=self.random_seed, seed_simulator=self.random_seed) result = svm.run(quantum_instance) ori_alphas = result['svm']['alphas'] np.testing.assert_array_almost_equal(result['kernel_matrix_testing'], ref_kernel_testing, decimal=4) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal(result['svm']['support_vectors'], ref_support_vectors, decimal=4) self.assertEqual(result['testing_accuracy'], 0.5) file_path = self._get_resource_path('qsvm_test.npz') svm.save_model(file_path) self.assertTrue(os.path.exists(file_path)) loaded_svm = QSVM(feature_map) loaded_svm.load_model(file_path) np.testing.assert_array_almost_equal( loaded_svm.ret['svm']['support_vectors'], ref_support_vectors, decimal=4) np.testing.assert_array_almost_equal(loaded_svm.ret['svm']['alphas'], ori_alphas, decimal=4) loaded_test_acc = loaded_svm.test(svm.test_dataset[0], svm.test_dataset[1], quantum_instance) self.assertEqual(result['testing_accuracy'], loaded_test_acc) np.testing.assert_array_almost_equal( loaded_svm.ret['kernel_matrix_testing'], ref_kernel_testing, decimal=4) if os.path.exists(file_path): try: os.remove(file_path) except Exception: # pylint: disable=broad-except pass
backend = provider.get_backend( 'ibmq_qasm_simulator') # Specifying Quantum device num_qubits = 1 feature_map = SecondOrderExpansion(feature_dimension=num_qubits, depth=2, entanglement='full') svm = QSVM(feature_map, training_data, testing_data) # Creation of QSVM quantum_instance = QuantumInstance(backend, shots=shots, skip_qobj_validation=False) print('Running....\n') result = svm.run(quantum_instance) # Running the QSVM and getting the accuracy data = np.array([[1.453], [1.023], [0.135], [0.266]]) #Unlabelled data prediction = svm.predict(data, quantum_instance) # Predict using unlabelled data print( 'Prediction of Smoker or Non-Smoker based upon gene expression of CDKN2A\n' ) print('Accuracy: ', result['testing_accuracy'], '\n') print('Prediction from input data where 0 = Non-Smoker and 1 = Smoker\n') print(prediction)
def compareMethods(class1, class2, class3 = None, backend=BasicAer.get_backend('qasm_simulator'), name = "", include_unscaled=False, include_QSVM = True, include_VQC = True, feature_dimension = 2, gamma = 'auto', C = 1.0): #Define header and chart data data = [] header = ["Algorithm", "Backend", "Time", "Accuracy", "Only one Class Predicted?"] data.append(header) #Split data into train and test class1_train, class1_test = train_test_split(class1, test_size=0.33, random_state=42) class2_train, class2_test = train_test_split(class2, test_size=0.33, random_state=42) feature_dim = feature_dimension if class3 is not None: class3_train, class3_test = train_test_split(class3, test_size=0.33, random_state=42) #Get input data for quantum training_data = {'A': np.asarray(class1_train), 'B': np.asarray(class2_train)} test_data = {'A': np.asarray(class1_test), 'B': np.asarray(class2_test)} total_array = np.concatenate((test_data['A'], test_data['B'])) if class3 is not None: training_data["C"] = class3_train test_data["C"] = class3_test total_array = np.concatenate((total_array, test_data['C'])) #Get input data for classical X_train, x_test, Y_train, y_test = convertFromQS(training_data, test_data) #Classical SVM, linear kernel (scaled and unscaled) if include_unscaled: start = time.time() clf = svm.SVC(kernel='linear') # Linear Kernel model = clf.fit(X_train, Y_train) y_pred = clf.predict(x_test) end = time.time() data.append(["SVM, Linear Kernel", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)]) start = time.time() scaler = StandardScaler() X_train_std = scaler.fit_transform(X_train) x_test_std = scaler.fit_transform(x_test) clf = svm.SVC(kernel='linear') # Linear Kernel model = clf.fit(X_train_std, Y_train) y_pred = clf.predict(x_test_std) end = time.time() data.append(["SVM, Linear Kernel, scaled", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)]) #Classical SVM, rbf kernel (scaled and unscaled) if include_unscaled: start = time.time() clf = svm.SVC(C=C, kernel='rbf', gamma = gamma) # rbf Kernel model = clf.fit(X_train, Y_train) y_pred = clf.predict(x_test) end = time.time() data.append(["SVM, RBF Kernel", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)]) start = time.time() scaler = StandardScaler() X_train_std = scaler.fit_transform(X_train) x_test_std = scaler.fit_transform(x_test) clf = svm.SVC(C=C, kernel='rbf', gamma = gamma) # rbf Kernel model = clf.fit(X_train_std, Y_train) y_pred = clf.predict(x_test_std) end = time.time() data.append(["SVM, RBF Kernel, scaled", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)]) #QSVM run if include_QSVM: start = time.time() feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2, entanglement='linear') if class3 is None: qsvm = QSVM(feature_map, training_data, test_data, total_array) else: qsvm = QSVM(feature_map, training_data, test_data, total_array, multiclass_extension=AllPairs()) quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=10598, seed_transpiler=10598) resultSVM = qsvm.run(quantum_instance) end = time.time() QSVM_Summary = ["QSVM", backend.name(), round(end-start), str(round(100*resultSVM['testing_accuracy'], 2)), checkAllSame(resultSVM['predicted_classes'])] data.append(QSVM_Summary) path = 'C:\\Users\\admin\\Desktop\\QQML\\Code\\Saved_SVMs\\' + name + "_" + backend.name() + "_QSVM" if class3 is None: #Bug in package prevents saving Multiclass svms. Will find workaround or submit bug report if time. qsvm.save_model(path) #VQC run if include_VQC: start = time.time() optimizer = SPSA(max_trials=100, c0=4.0, skip_calibration=True) optimizer.set_options(save_steps=1) feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2) var_form = TwoLocal(feature_dim, ['ry', 'rz'], 'cz', reps=3) vqc = VQC(optimizer, feature_map, var_form, training_data, test_data, total_array) quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=10589, seed_transpiler=10598) resultVQC = vqc.run(quantum_instance) end = time.time() VQC_Summary = ["VQC", backend.name(), round(end-start), str(round(100*resultVQC['testing_accuracy'], 2)), checkAllSame(resultVQC['predicted_classes'])] data.append(VQC_Summary) path = 'C:\\Users\\admin\\Desktop\\QQML\\Code\\Saved_SVMs\\' + name + "_" + backend.name() + "_VQC" vqc.save_model(path) display(HTML(tabulate.tabulate(data, tablefmt='html'))) return data
def test_multiclass(self, multiclass_extension): """ QSVM Multiclass One Against All test """ train_input = { 'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [0.49156185, -0.3660534]]), 'C': np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294], [-0.82139073, 0.29941512]]) } test_input = { 'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [0.06183066, -0.53376975]]), 'C': np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162], [-0.66489165, 0.1181712]]) } method = { 'one_vs_all': OneAgainstRest(), 'all_vs_all': AllPairs(), 'error_correcting': ErrorCorrectingCode(code_size=5) } accuracy = { 'one_vs_all': 0.444444444, 'all_vs_all': 0.444444444, 'error_correcting': 0.555555555 } predicted_classes = { 'one_vs_all': ['A', 'A', 'C', 'A', 'A', 'A', 'A', 'C', 'C'], 'all_vs_all': ['A', 'A', 'C', 'A', 'A', 'A', 'A', 'C', 'C'], 'error_correcting': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'C', 'C'] } total_array = np.concatenate( (test_input['A'], test_input['B'], test_input['C'])) data_preparation = self.data_preparation try: svm = QSVM(data_preparation, train_input, test_input, total_array, multiclass_extension=method[multiclass_extension]) result = svm.run(self.qasm_simulator) self.assertAlmostEqual(result['testing_accuracy'], accuracy[multiclass_extension], places=4) self.assertEqual(result['predicted_classes'], predicted_classes[multiclass_extension]) except MissingOptionalLibraryError as ex: self.skipTest(str(ex))
def test_qsvm_binary_directly_statevector(self, data_preparation_type): """ QSVM Binary Directly Statevector test """ ref_kernel_testing = np. array([[0.1443953, 0.18170069, 0.47479649, 0.14691763], [0.33041779, 0.37663733, 0.02115561, 0.16106199]]) ref_support_vectors = np.array([[2.95309709, 2.51327412], [3.14159265, 4.08407045], [4.08407045, 2.26194671], [4.46106157, 2.38761042]]) backend = BasicAer.get_backend('statevector_simulator') data_preparation = self.data_preparation[data_preparation_type] if data_preparation_type == 'wrapped': warnings.filterwarnings('ignore', category=DeprecationWarning) svm = QSVM(data_preparation, self.training_data, self.testing_data, None) if data_preparation_type == 'wrapped': warnings.filterwarnings('always', category=DeprecationWarning) quantum_instance = QuantumInstance(backend, seed_transpiler=self.random_seed, seed_simulator=self.random_seed) file_path = self.get_resource_path('qsvm_test.npz') try: result = svm.run(quantum_instance) ori_alphas = result['svm']['alphas'] np.testing.assert_array_almost_equal( result['kernel_matrix_testing'], ref_kernel_testing, decimal=4) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal( result['svm']['support_vectors'], ref_support_vectors, decimal=4) self.assertEqual(result['testing_accuracy'], 0.5) svm.save_model(file_path) self.assertTrue(os.path.exists(file_path)) loaded_svm = QSVM(feature_map) loaded_svm.load_model(file_path) np.testing.assert_array_almost_equal( loaded_svm.ret['svm']['support_vectors'], ref_support_vectors, decimal=4) np.testing.assert_array_almost_equal( loaded_svm.ret['svm']['alphas'], ori_alphas, decimal=4) loaded_test_acc = loaded_svm.test(svm.test_dataset[0], svm.test_dataset[1], quantum_instance) self.assertEqual(result['testing_accuracy'], loaded_test_acc) np.testing.assert_array_almost_equal( loaded_svm.ret['kernel_matrix_testing'], ref_kernel_testing, decimal=4) except NameError as ex: self.skipTest(str(ex)) finally: if os.path.exists(file_path): try: os.remove(file_path) except Exception: # pylint: disable=broad-except pass
def test_binary_directly_statevector(self): """Test QSVM on binary classification on BasicAer's statevector simulator. Also tests saving and loading models.""" data_preparation = self.data_preparation svm = QSVM(data_preparation, self.training_data, self.testing_data, None, lambda2=0) file_path = self.get_resource_path('qsvm_test.npz') try: result = svm.run(self.statevector_simulator) ori_alphas = result['svm']['alphas'] np.testing.assert_array_almost_equal( result['kernel_matrix_testing'], self.ref_kernel_testing['statevector'], decimal=4) self.assertEqual(len(result['svm']['support_vectors']), 4) np.testing.assert_array_almost_equal( result['svm']['support_vectors'], self.ref_support_vectors, decimal=4) self.assertEqual(result['testing_accuracy'], 0.5) svm.save_model(file_path) self.assertTrue(os.path.exists(file_path)) loaded_svm = QSVM(data_preparation) loaded_svm.load_model(file_path) np.testing.assert_array_almost_equal( loaded_svm.ret['svm']['support_vectors'], self.ref_support_vectors, decimal=4) np.testing.assert_array_almost_equal( loaded_svm.ret['svm']['alphas'], ori_alphas, decimal=4) loaded_test_acc = loaded_svm.test(svm.test_dataset[0], svm.test_dataset[1], self.statevector_simulator) self.assertEqual(result['testing_accuracy'], loaded_test_acc) np.testing.assert_array_almost_equal( loaded_svm.ret['kernel_matrix_testing'], self.ref_kernel_testing['statevector'], decimal=4) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) finally: if os.path.exists(file_path): try: os.remove(file_path) except Exception: # pylint: disable=broad-except pass