コード例 #1
0
    def test_qsvm_kernel_binary_directly(self):

        ref_kernel_training = np.array(
            [[1., 0.85366667, 0.12341667, 0.36408333],
             [0.85366667, 1., 0.11141667, 0.45491667],
             [0.12341667, 0.11141667, 1., 0.667],
             [0.36408333, 0.45491667, 0.667, 1.]])

        ref_kernel_testing = np.array(
            [[0.14316667, 0.18208333, 0.4785, 0.14441667],
             [0.33608333, 0.3765, 0.02316667, 0.15858333]])

        ref_alpha = np.array([0.36064489, 1.49204209, 0.0264953, 1.82619169])
        ref_bias = np.array([-0.03380763])

        ref_support_vectors = np.array([[2.95309709, 2.51327412],
                                        [3.14159265, 4.08407045],
                                        [4.08407045, 2.26194671],
                                        [4.46106157, 2.38761042]])

        backend = get_aer_backend('qasm_simulator')
        num_qubits = 2
        feature_map = SecondOrderExpansion(num_qubits=num_qubits,
                                           depth=2,
                                           entangler_map={0: [1]})
        svm = QSVMKernel(feature_map, self.training_data, self.testing_data,
                         None)
        svm.random_seed = self.random_seed
        run_config = RunConfig(shots=self.shots,
                               max_credits=10,
                               memory=False,
                               seed=self.random_seed)
        quantum_instance = QuantumInstance(backend,
                                           run_config,
                                           seed_mapper=self.random_seed)

        result = svm.run(quantum_instance)
        np.testing.assert_array_almost_equal(result['kernel_matrix_training'],
                                             ref_kernel_training,
                                             decimal=1)
        np.testing.assert_array_almost_equal(result['kernel_matrix_testing'],
                                             ref_kernel_testing,
                                             decimal=1)

        self.assertEqual(len(result['svm']['support_vectors']), 4)
        np.testing.assert_array_almost_equal(result['svm']['support_vectors'],
                                             ref_support_vectors,
                                             decimal=4)

        np.testing.assert_array_almost_equal(result['svm']['alphas'],
                                             ref_alpha,
                                             decimal=4)
        np.testing.assert_array_almost_equal(result['svm']['bias'],
                                             ref_bias,
                                             decimal=4)

        self.assertEqual(result['testing_accuracy'], 0.5)
コード例 #2
0
    def test_qsvm_kernel_binary_directly_statevector(self):

        ref_kernel_testing = np.array(
            [[0.1443953, 0.18170069, 0.47479649, 0.14691763],
             [0.33041779, 0.37663733, 0.02115561, 0.16106199]])

        ref_support_vectors = np.array([[2.95309709, 2.51327412],
                                        [3.14159265, 4.08407045],
                                        [4.08407045, 2.26194671],
                                        [4.46106157, 2.38761042]])

        backend = get_aer_backend('statevector_simulator')
        num_qubits = 2
        feature_map = SecondOrderExpansion(num_qubits=num_qubits,
                                           depth=2,
                                           entangler_map={0: [1]})
        svm = QSVMKernel(feature_map, self.training_data, self.testing_data,
                         None)
        svm.random_seed = self.random_seed

        quantum_instance = QuantumInstance(backend,
                                           seed_mapper=self.random_seed)
        result = svm.run(quantum_instance)

        ori_alphas = result['svm']['alphas']

        np.testing.assert_array_almost_equal(result['kernel_matrix_testing'],
                                             ref_kernel_testing,
                                             decimal=4)

        self.assertEqual(len(result['svm']['support_vectors']), 4)
        np.testing.assert_array_almost_equal(result['svm']['support_vectors'],
                                             ref_support_vectors,
                                             decimal=4)

        self.assertEqual(result['testing_accuracy'], 0.5)

        file_path = self._get_resource_path('qsvm_kernel_test.npz')
        svm.save_model(file_path)

        self.assertTrue(os.path.exists(file_path))

        loaded_svm = QSVMKernel(feature_map, self.training_data, None, None)
        loaded_svm.load_model(file_path)

        np.testing.assert_array_almost_equal(
            loaded_svm.ret['svm']['support_vectors'],
            ref_support_vectors,
            decimal=4)

        np.testing.assert_array_almost_equal(loaded_svm.ret['svm']['alphas'],
                                             ori_alphas,
                                             decimal=4)

        loaded_test_acc = loaded_svm.test(svm.test_dataset[0],
                                          svm.test_dataset[1],
                                          quantum_instance)
        self.assertEqual(result['testing_accuracy'], loaded_test_acc)

        np.testing.assert_array_almost_equal(
            loaded_svm.ret['kernel_matrix_testing'],
            ref_kernel_testing,
            decimal=4)

        if os.path.exists(file_path):
            try:
                os.remove(file_path)
            except:
                pass