コード例 #1
0
def EstimatedVaR(x):

    cdf_objective = FixedValueComparator(agg.num_sum_qubits, x + 1, geq=False)

    multivariate_var = MultivariateProblem(u, agg, cdf_objective)

    num_eval_qubits = 4
    ae_var = AmplitudeEstimation(num_eval_qubits, multivariate_var)
    result_var = ae_var.run(
        quantum_instance=BasicAer.get_backend('statevector_simulator'))

    #print("result_var['estimation']: ", result_var['estimation'])
    return result_var['estimation']
コード例 #2
0
    def test_fixed_value_comparator(self, num_state_qubits, value, geq):
        """ fixed value comparator test """
        # initialize weighted sum operator factory
        comp = Comparator(num_state_qubits, value, geq)

        # initialize circuit
        q = QuantumRegister(num_state_qubits + 1)
        if comp.required_ancillas() > 0:
            q_a = QuantumRegister(comp.required_ancillas())
            qc = QuantumCircuit(q, q_a)
        else:
            q_a = None
            qc = QuantumCircuit(q)

        # set equal superposition state
        qc.h(q[:num_state_qubits])

        # build circuit
        comp.build(qc, q, q_a)

        # run simulation
        job = execute(qc,
                      BasicAer.get_backend('statevector_simulator'),
                      shots=1)

        for i, s_a in enumerate(job.result().get_statevector()):

            prob = np.abs(s_a)**2
            if prob > 1e-6:
                # equal superposition
                self.assertEqual(True,
                                 np.isclose(1.0, prob * 2.0**num_state_qubits))
                b_value = '{0:b}'.format(i).rjust(qc.width(), '0')
                x = int(b_value[(-num_state_qubits):], 2)
                comp_result = int(b_value[-num_state_qubits - 1], 2)
                if geq:
                    self.assertEqual(x >= value, comp_result == 1)
                else:
                    self.assertEqual(x < value, comp_result == 1)
コード例 #3
0
# plt.xticks(size=15)
# plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)
# plt.title('Expected Loss', size=15)
# plt.ylabel('Probability', size=15)
# plt.ylim((0,1))
# plt.grid()
# plt.show()

#partie 3 estimation de CDF (cumulative distribution function) en utilisant QAE
print("----------estimaton de CDF-------------------------")

# fixer la valeur x pour estimer le CDF
x_eval = 2

# définition du circuit de comparaison
cdf_objective = FixedValueComparator(agg.num_sum_qubits, x_eval + 1, geq=False)

# définition du "Multivariate Problem"
multivariate_cdf = MultivariateProblem(u, agg, cdf_objective)

# obtenir le nombre de qubits nécessaires pour représenter le problème
num_qubits = multivariate_cdf.num_target_qubits
# obtenir le nombre de qubits auxiliaires nécessaires pour représenter le problème
num_ancillas = multivariate_cdf.required_ancillas()

# construire le circuit
q = QuantumRegister(num_qubits, name='q')
q_a = QuantumRegister(num_ancillas, name='q_a')
qc = QuantumCircuit(q, q_a)
multivariate_cdf.build(qc, q, q_a)