コード例 #1
0
    def test_linear_rotations_mutability(self):
        """Test the mutability of the linear rotations circuit."""

        linear_rotation = LinearPauliRotations()

        with self.subTest(msg='missing number of state qubits'):
            with self.assertRaises(AttributeError):  # no state qubits set
                print(linear_rotation.draw())

        with self.subTest(
                msg='default setup, just setting number of state qubits'):
            linear_rotation.num_state_qubits = 2
            self.assertFunctionIsCorrect(linear_rotation, lambda x: x / 2)

        with self.subTest(msg='setting non-default values'):
            linear_rotation.slope = -2.3 * 2
            linear_rotation.offset = 1 * 2
            self.assertFunctionIsCorrect(linear_rotation,
                                         lambda x: 1 - 2.3 * x)

        with self.subTest(msg='changing all values'):
            linear_rotation.num_state_qubits = 4
            linear_rotation.slope = 0.2 * 2
            linear_rotation.offset = 0.1 * 2
            self.assertFunctionIsCorrect(linear_rotation,
                                         lambda x: 0.1 + 0.2 * x)
コード例 #2
0
    def test_linear_function(self, num_state_qubits, slope, offset):
        """Test the linear rotation arithmetic circuit."""
        def linear(x):
            return offset + slope * x

        linear_rotation = LinearPauliRotations(num_state_qubits, slope * 2, offset * 2)
        self.assertFunctionIsCorrect(linear_rotation, linear)
コード例 #3
0
    def __init__(
        self,
        n_normal: int,
        normal_max_value: float,
        p_zeros: Union[List[float], np.ndarray],
        rhos: Union[List[float], np.ndarray],
    ) -> None:
        """
        Args:
            n_normal: Number of qubits to represent the latent normal random variable Z
            normal_max_value: Min/max value to truncate the latent normal random variable Z
            p_zeros: Standard default probabilities for each asset
            rhos: Sensitivities of default probability of assets with respect to latent variable Z
        """
        self.n_normal = n_normal
        self.normal_max_value = normal_max_value
        self.p_zeros = p_zeros
        self.rhos = rhos
        num_qubits = n_normal + len(p_zeros)

        # get normal (inverse) CDF and pdf (these names are from the paper, therefore ignore
        # pylint)
        def F(x):  # pylint: disable=invalid-name
            return norm.cdf(x)

        def F_inv(x):  # pylint: disable=invalid-name
            return norm.ppf(x)

        def f(x):  # pylint: disable=invalid-name
            return norm.pdf(x)

        # create linear rotations for conditional defaults
        slopes = []
        offsets = []
        for rho, p_zero in zip(rhos, p_zeros):
            psi = F_inv(p_zero) / np.sqrt(1 - rho)

            # compute slope / offset
            slope = -np.sqrt(rho) / np.sqrt(1 - rho)
            slope *= f(psi) / np.sqrt(1 - F(psi)) / np.sqrt(F(psi))
            offset = 2 * np.arcsin(np.sqrt(F(psi)))

            # adjust for integer to normal range mapping
            offset += slope * (-normal_max_value)
            slope *= 2 * normal_max_value / (2**n_normal - 1)

            offsets += [offset]
            slopes += [slope]

        # create normal distribution
        normal_distribution = NormalDistribution(
            n_normal,
            0,
            1,
            bounds=(-normal_max_value, normal_max_value),
        )

        # build circuit
        inner = QuantumCircuit(num_qubits, name="P(X)")
        inner.append(normal_distribution.to_gate(), list(range(n_normal)))
        for k, (slope, offset) in enumerate(zip(slopes, offsets)):
            lry = LinearPauliRotations(n_normal, slope, offset)
            qubits = list(range(n_normal)) + [n_normal + k]
            inner.append(lry.to_gate(), qubits)

        super().__init__(num_qubits, name="P(X)")
        self.append(inner.to_gate(), inner.qubits)
コード例 #4
0
 def build(self, qc, q, q_ancillas=None, params=None):
     self._normal.build(qc, q, q_ancillas)
     for k in range(self.K):
         lry = LinearPauliRotations(self.n_normal, self._slopes[k], self._offsets[k])
         qc.append(lry.to_instruction(), self.i_normal + [self.i_ps[k]])