def test_wikipedia(self): """ wikipedia test """ try: wiki = WikipediaDataProvider(token=self._quandl_token, tickers=["GOOG", "AAPL"], start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30)) wiki.run() similarity = np.array([[1.00000000e+00, 8.44268222e-05], [8.44268222e-05, 1.00000000e+00]]) covariance = np.array([[269.60118129, 25.42252332], [25.42252332, 7.86304499]]) with self.subTest( 'test WikipediaDataProvider get_covariance_matrix'): np.testing.assert_array_almost_equal( wiki.get_covariance_matrix(), covariance, decimal=3) with self.subTest( 'test WikipediaDataProvider get_similarity_matrix'): np.testing.assert_array_almost_equal( wiki.get_similarity_matrix(), similarity, decimal=3) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) except QiskitFinanceError as ex: self.skipTest("Test of WikipediaDataProvider skipped: {}".format( str(ex)))
def test_wikipedia(self): """ wikipedia test """ wiki = WikipediaDataProvider( token="", tickers=["GOOG", "AAPL"], stockmarket=StockMarket.NASDAQ, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30) ) # can throw QiskitFinanceError try: wiki.run() similarity = np.array([ [1.00000000e+00, 8.44268222e-05], [8.44268222e-05, 1.00000000e+00] ]) covariance = np.array([ [269.60118129, 25.42252332], [25.42252332, 7.86304499] ]) np.testing.assert_array_almost_equal(wiki.get_covariance_matrix(), covariance, decimal=3) np.testing.assert_array_almost_equal(wiki.get_similarity_matrix(), similarity, decimal=3) except QiskitFinanceError: self.skipTest("Test of WikipediaDataProvider skipped due to the per-day usage limits.")