コード例 #1
0
ファイル: pVQD.py プロジェクト: StefanoBarison/p-VQD
    def construct_total_circuit_local(self, time_step):
        ## This function creates the circuit that will be used to evaluate overlap and its gradient, in a local fashion

        # First, create the Trotter step

        step_h = time_step * self.hamiltonian
        trotter = PauliTrotterEvolution(reps=1)
        U_dt = trotter.convert(step_h.exp_i()).to_circuit()

        l_circ = self.ansatz.assign_parameters({self.params_vec: self.left})
        r_circ = self.ansatz.assign_parameters({self.params_vec: self.right})

        ## Projector
        zero_prj = StateFn(projector_zero_local(self.hamiltonian.num_qubits),
                           is_measurement=True)
        state_wfn = zero_prj @ StateFn(r_circ + U_dt + l_circ.inverse())

        return state_wfn
コード例 #2
0
 def test_trotter_from_bound(self):
     """HamiltonianPhaseEstimation with bound and Trotterization"""
     result = self._setup_from_bound(PauliTrotterEvolution(
         trotter_mode="suzuki", reps=3),
                                     op_class="SummedOp")
     phase_dict = result.filter_phases(0.1)
     phases = list(phase_dict.keys())
     with self.subTest("test phases has the correct length"):
         self.assertEqual(len(phases), 2)
     with self.subTest("test phases has correct values"):
         self.assertAlmostEqual(phases[0], 1.5, delta=0.001)
         self.assertAlmostEqual(phases[1], -1.5, delta=0.001)
コード例 #3
0
 def test_H2_hamiltonian(self):
     """Test H2 hamiltonian"""
     hamiltonian = (-1.0523732457728587 * (I ^ I)) + (0.3979374248431802 * (I ^ Z)) \
         + (-0.3979374248431802 * (Z ^ I)) + (-0.011280104256235324 * (Z ^ Z)) \
         + (0.18093119978423147 * (X ^ X))
     state_preparation = StateFn((I ^ H).to_circuit())
     evo = PauliTrotterEvolution(trotter_mode='suzuki', reps=4)
     result = self.hamiltonian_pe(hamiltonian,
                                  state_preparation,
                                  evolution=evo)
     with self.subTest('Most likely eigenvalues'):
         self.assertAlmostEqual(result.most_likely_eigenvalue,
                                -1.855,
                                delta=.001)
     with self.subTest('Most likely phase'):
         self.assertAlmostEqual(result.phase, 0.5937, delta=.001)
     with self.subTest('All eigenvalues'):
         phase_dict = result.filter_phases(0.1)
         phases = list(phase_dict.keys())
         self.assertAlmostEqual(phases[0], -0.8979, delta=0.001)
         self.assertAlmostEqual(phases[1], -1.8551, delta=0.001)
         self.assertAlmostEqual(phases[2], -1.2376, delta=0.001)
コード例 #4
0
class TestHamiltonianPhaseEstimation(QiskitAlgorithmsTestCase):
    """Tests for obtaining eigenvalues from phase estimation"""
    def hamiltonian_pe(
        self,
        hamiltonian,
        state_preparation=None,
        num_evaluation_qubits=6,
        backend=None,
        evolution=None,
        bound=None,
    ):
        """Run HamiltonianPhaseEstimation and return result with all  phases."""
        if backend is None:
            backend = qiskit.BasicAer.get_backend("statevector_simulator")
        quantum_instance = qiskit.utils.QuantumInstance(backend=backend,
                                                        shots=10000)
        phase_est = HamiltonianPhaseEstimation(
            num_evaluation_qubits=num_evaluation_qubits,
            quantum_instance=quantum_instance)
        result = phase_est.estimate(
            hamiltonian=hamiltonian,
            state_preparation=state_preparation,
            evolution=evolution,
            bound=bound,
        )
        return result

    @data(MatrixEvolution(), PauliTrotterEvolution("suzuki", 4))
    def test_pauli_sum_1(self, evolution):
        """Two eigenvalues from Pauli sum with X, Z"""
        hamiltonian = 0.5 * X + Z
        state_preparation = StateFn(H.to_circuit())

        result = self.hamiltonian_pe(hamiltonian,
                                     state_preparation,
                                     evolution=evolution)
        phase_dict = result.filter_phases(0.162, as_float=True)
        phases = list(phase_dict.keys())
        phases.sort()

        self.assertAlmostEqual(phases[0], -1.125, delta=0.001)
        self.assertAlmostEqual(phases[1], 1.125, delta=0.001)

    @data(MatrixEvolution(), PauliTrotterEvolution("suzuki", 3))
    def test_pauli_sum_2(self, evolution):
        """Two eigenvalues from Pauli sum with X, Y, Z"""
        hamiltonian = 0.5 * X + Y + Z
        state_preparation = None

        result = self.hamiltonian_pe(hamiltonian,
                                     state_preparation,
                                     evolution=evolution)
        phase_dict = result.filter_phases(0.1, as_float=True)
        phases = list(phase_dict.keys())
        phases.sort()

        self.assertAlmostEqual(phases[0], -1.484, delta=0.001)
        self.assertAlmostEqual(phases[1], 1.484, delta=0.001)

    def test_single_pauli_op(self):
        """Two eigenvalues from Pauli sum with X, Y, Z"""
        hamiltonian = Z
        state_preparation = None

        result = self.hamiltonian_pe(hamiltonian,
                                     state_preparation,
                                     evolution=None)
        eigv = result.most_likely_eigenvalue
        with self.subTest("First eigenvalue"):
            self.assertAlmostEqual(eigv, 1.0, delta=0.001)

        state_preparation = StateFn(X.to_circuit())

        result = self.hamiltonian_pe(hamiltonian,
                                     state_preparation,
                                     bound=1.05)
        eigv = result.most_likely_eigenvalue
        with self.subTest("Second eigenvalue"):
            self.assertAlmostEqual(eigv, -0.98, delta=0.01)

    def test_H2_hamiltonian(self):
        """Test H2 hamiltonian"""
        hamiltonian = ((-1.0523732457728587 * (I ^ I)) + (0.3979374248431802 *
                                                          (I ^ Z)) +
                       (-0.3979374248431802 *
                        (Z ^ I)) + (-0.011280104256235324 *
                                    (Z ^ Z)) + (0.18093119978423147 * (X ^ X)))
        state_preparation = StateFn((I ^ H).to_circuit())
        evo = PauliTrotterEvolution(trotter_mode="suzuki", reps=4)
        result = self.hamiltonian_pe(hamiltonian,
                                     state_preparation,
                                     evolution=evo)
        with self.subTest("Most likely eigenvalues"):
            self.assertAlmostEqual(result.most_likely_eigenvalue,
                                   -1.855,
                                   delta=0.001)
        with self.subTest("Most likely phase"):
            self.assertAlmostEqual(result.phase, 0.5937, delta=0.001)
        with self.subTest("All eigenvalues"):
            phase_dict = result.filter_phases(0.1)
            phases = list(phase_dict.keys())
            self.assertAlmostEqual(phases[0], -0.8979, delta=0.001)
            self.assertAlmostEqual(phases[1], -1.8551, delta=0.001)
            self.assertAlmostEqual(phases[2], -1.2376, delta=0.001)

    def test_matrix_evolution(self):
        """1Q Hamiltonian with MatrixEvolution"""
        hamiltonian = (0.5 * X) + (0.6 * Y) + (0.7 * I)
        state_preparation = None
        result = self.hamiltonian_pe(hamiltonian,
                                     state_preparation,
                                     evolution=MatrixEvolution())
        phase_dict = result.filter_phases(0.2, as_float=True)
        phases = list(phase_dict.keys())
        self.assertAlmostEqual(phases[0], 1.490, delta=0.001)
        self.assertAlmostEqual(phases[1], -0.090, delta=0.001)

    def _setup_from_bound(self, evolution, op_class):
        hamiltonian = 0.5 * X + Y + Z
        state_preparation = None
        bound = 1.2 * sum(
            [abs(hamiltonian.coeff * coeff) for coeff in hamiltonian.coeffs])
        if op_class == "MatrixOp":
            hamiltonian = hamiltonian.to_matrix_op()
        backend = qiskit.BasicAer.get_backend("statevector_simulator")
        qi = qiskit.utils.QuantumInstance(backend=backend, shots=10000)
        phase_est = HamiltonianPhaseEstimation(num_evaluation_qubits=6,
                                               quantum_instance=qi)
        result = phase_est.estimate(
            hamiltonian=hamiltonian,
            bound=bound,
            evolution=evolution,
            state_preparation=state_preparation,
        )
        return result

    def test_from_bound(self):
        """HamiltonianPhaseEstimation with bound"""
        for op_class in ("SummedOp", "MatrixOp"):
            result = self._setup_from_bound(MatrixEvolution(), op_class)
            cutoff = 0.01
            phases = result.filter_phases(cutoff)
            with self.subTest(
                    f"test phases has the correct length: {op_class}"):
                self.assertEqual(len(phases), 2)
                with self.subTest(
                        f"test scaled phases are correct: {op_class}"):
                    self.assertEqual(list(phases.keys()), [1.5, -1.5])
                    phases = result.filter_phases(cutoff, scaled=False)
                with self.subTest(
                        f"test unscaled phases are correct: {op_class}"):
                    self.assertEqual(list(phases.keys()), [0.25, 0.75])

    def test_trotter_from_bound(self):
        """HamiltonianPhaseEstimation with bound and Trotterization"""
        result = self._setup_from_bound(PauliTrotterEvolution(
            trotter_mode="suzuki", reps=3),
                                        op_class="SummedOp")
        phase_dict = result.filter_phases(0.1)
        phases = list(phase_dict.keys())
        with self.subTest("test phases has the correct length"):
            self.assertEqual(len(phases), 2)
        with self.subTest("test phases has correct values"):
            self.assertAlmostEqual(phases[0], 1.5, delta=0.001)
            self.assertAlmostEqual(phases[1], -1.5, delta=0.001)