コード例 #1
0
    def test_marginal_counts_no_cregs(self):
        """Test that marginal_counts without cregs See qiskit-terra/6430."""
        raw_counts_1 = {
            "0x0": 4,
            "0x1": 7,
            "0x2": 10,
            "0x6": 5,
            "0x9": 11,
            "0xD": 9,
            "0x12": 8
        }
        data_1 = models.ExperimentResultData(counts=dict(**raw_counts_1))
        exp_result_header_1 = QobjExperimentHeader(memory_slots=5)
        exp_result_1 = models.ExperimentResult(shots=54,
                                               success=True,
                                               data=data_1,
                                               header=exp_result_header_1)

        result = Result(results=[exp_result_1], **self.base_result_args)

        _ = marginal_counts(result, indices=[0])
        marginal_counts_result = marginal_counts(result, indices=[0])
        self.assertEqual(marginal_counts_result.get_counts(), {
            "0": 27,
            "1": 27
        })
コード例 #2
0
    def test_marginal_counts(self):
        """Test that counts are marginalized correctly."""
        raw_counts = {
            "0x0": 4,
            "0x1": 7,
            "0x2": 10,
            "0x6": 5,
            "0x9": 11,
            "0xD": 9,
            "0xE": 8
        }
        data = models.ExperimentResultData(counts=dict(**raw_counts))
        exp_result_header = QobjExperimentHeader(creg_sizes=[["c0", 4]],
                                                 memory_slots=4)
        exp_result = models.ExperimentResult(shots=54,
                                             success=True,
                                             data=data,
                                             header=exp_result_header)
        result = Result(results=[exp_result], **self.base_result_args)
        expected_marginal_counts = {"00": 4, "01": 27, "10": 23}

        self.assertEqual(marginal_counts(result.get_counts(), [0, 1]),
                         expected_marginal_counts)
        self.assertEqual(marginal_counts(result.get_counts(), [1, 0]),
                         expected_marginal_counts)
コード例 #3
0
    def test_marginal_counts(self):
        """Test that counts are marginalized correctly."""
        raw_counts = {
            '0x0': 4,
            '0x1': 7,
            '0x2': 10,
            '0x6': 5,
            '0x9': 11,
            '0xD': 9,
            '0xE': 8
        }
        data = models.ExperimentResultData(counts=dict(**raw_counts))
        exp_result_header = QobjExperimentHeader(creg_sizes=[['c0', 4]],
                                                 memory_slots=4)
        exp_result = models.ExperimentResult(shots=54,
                                             success=True,
                                             data=data,
                                             header=exp_result_header)
        result = Result(results=[exp_result], **self.base_result_args)
        expected_marginal_counts = {'00': 4, '01': 27, '10': 23}

        self.assertEqual(marginal_counts(result.get_counts(), [0, 1]),
                         expected_marginal_counts)
        self.assertEqual(marginal_counts(result.get_counts(), [1, 0]),
                         expected_marginal_counts)
コード例 #4
0
    def test_marginal_counts_with_dict(self):
        """Test the marginal_counts method with dictionary instead of Result object.
        """
        dict_counts_1 = {
            '0000': 4,
            '0001': 7,
            '0010': 10,
            '0110': 5,
            '1001': 11,
            '1101': 9,
            '1110': 8
        }
        dict_counts_2 = {'10': 5, '11': 8}

        expected_marginal_counts_1 = {'00': 4, '01': 27, '10': 23}
        expected_marginal_counts_2 = {'0': 5, '1': 8}

        self.assertEqual(marginal_counts(dict_counts_1, [0, 1]),
                         expected_marginal_counts_1)
        self.assertEqual(marginal_counts(dict_counts_2, [0], inplace=True),
                         expected_marginal_counts_2)
        self.assertNotEqual(dict_counts_2, expected_marginal_counts_2)
        self.assertRaises(
            AttributeError,
            lambda: marginal_counts(dict_counts_1, [0, 1]).get_counts(0))
コード例 #5
0
    def test_marginal_counts_result(self):
        """Test that a Result object containing counts marginalizes correctly."""
        raw_counts_1 = {
            "0x0": 4,
            "0x1": 7,
            "0x2": 10,
            "0x6": 5,
            "0x9": 11,
            "0xD": 9,
            "0xE": 8
        }
        data_1 = models.ExperimentResultData(counts=raw_counts_1)
        exp_result_header_1 = QobjExperimentHeader(creg_sizes=[["c0", 4]],
                                                   memory_slots=4)
        exp_result_1 = models.ExperimentResult(shots=54,
                                               success=True,
                                               data=data_1,
                                               header=exp_result_header_1)

        raw_counts_2 = {"0x2": 5, "0x3": 8}
        data_2 = models.ExperimentResultData(counts=raw_counts_2)
        exp_result_header_2 = QobjExperimentHeader(creg_sizes=[["c0", 2]],
                                                   memory_slots=2)
        exp_result_2 = models.ExperimentResult(shots=13,
                                               success=True,
                                               data=data_2,
                                               header=exp_result_header_2)

        result = Result(results=[exp_result_1, exp_result_2],
                        **self.base_result_args)

        expected_marginal_counts_1 = {"00": 4, "01": 27, "10": 23}
        expected_marginal_counts_2 = {"0": 5, "1": 8}
        expected_marginal_counts_none = {
            "0000": 4,
            "0001": 7,
            "0010": 10,
            "0110": 5,
            "1001": 11,
            "1101": 9,
            "1110": 8,
        }

        self.assertEqual(
            marginal_counts(result, [0, 1]).get_counts(0),
            expected_marginal_counts_1)
        self.assertEqual(
            marginal_counts(result, [0]).get_counts(1),
            expected_marginal_counts_2)
        self.assertEqual(
            marginal_counts(result, None).get_counts(0),
            expected_marginal_counts_none)
コード例 #6
0
    def test_marginal_counts_result_creg_sizes(self):
        """Test that marginal_counts with Result input properly changes creg_sizes."""
        raw_counts = {
            "0x0": 4,
            "0x1": 7,
            "0x2": 10,
            "0x6": 5,
            "0x9": 11,
            "0xD": 9,
            "0xE": 8
        }
        data = models.ExperimentResultData(counts=dict(**raw_counts))
        exp_result_header = QobjExperimentHeader(creg_sizes=[["c0", 1],
                                                             ["c1", 3]],
                                                 memory_slots=4)
        exp_result = models.ExperimentResult(shots=54,
                                             success=True,
                                             data=data,
                                             header=exp_result_header)

        result = Result(results=[exp_result], **self.base_result_args)

        expected_marginal_counts = {"0 0": 14, "0 1": 18, "1 0": 13, "1 1": 9}
        expected_creg_sizes = [["c0", 1], ["c1", 1]]
        expected_memory_slots = 2
        marginal_counts_result = marginal_counts(result, [0, 2])
        self.assertEqual(marginal_counts_result.results[0].header.creg_sizes,
                         expected_creg_sizes)
        self.assertEqual(marginal_counts_result.results[0].header.memory_slots,
                         expected_memory_slots)
        self.assertEqual(marginal_counts_result.get_counts(0),
                         expected_marginal_counts)
コード例 #7
0
    def test_marginal_counts_result_format(self):
        """Test that marginal_counts with format_marginal true properly formats output."""
        raw_counts_1 = {
            "0x0": 4,
            "0x1": 7,
            "0x2": 10,
            "0x6": 5,
            "0x9": 11,
            "0xD": 9,
            "0x12": 8
        }
        data_1 = models.ExperimentResultData(counts=dict(**raw_counts_1))
        exp_result_header_1 = QobjExperimentHeader(creg_sizes=[["c0", 2],
                                                               ["c1", 3]],
                                                   memory_slots=5)
        exp_result_1 = models.ExperimentResult(shots=54,
                                               success=True,
                                               data=data_1,
                                               header=exp_result_header_1)

        result = Result(results=[exp_result_1], **self.base_result_args)

        expected_marginal_counts_1 = {
            "0_0 _0": 14,
            "0_0 _1": 18,
            "0_1 _0": 5,
            "0_1 _1": 9,
            "1_0 _0": 8,
        }
        marginal_counts_result = marginal_counts(result.get_counts(),
                                                 [0, 2, 4],
                                                 format_marginal=True)
        self.assertEqual(marginal_counts_result, expected_marginal_counts_1)
コード例 #8
0
    def _component_data(self, composite_data: List[Dict]) -> List[List[Dict]]:
        """Return marginalized data for component experiments"""
        # Marginalize data
        marginalized_data = {}
        for datum in composite_data:
            metadata = datum.get("metadata", {})

            # Add marginalized data to sub experiments
            if "composite_clbits" in metadata:
                composite_clbits = metadata["composite_clbits"]
            else:
                composite_clbits = None
            for i, index in enumerate(metadata["composite_index"]):
                if index not in marginalized_data:
                    # Initialize data list for marginalized
                    marginalized_data[index] = []
                sub_data = {"metadata": metadata["composite_metadata"][i]}
                if "counts" in datum:
                    if composite_clbits is not None:
                        sub_data["counts"] = marginal_counts(
                            datum["counts"], composite_clbits[i])
                    else:
                        sub_data["counts"] = datum["counts"]
                if "memory" in datum:
                    if composite_clbits is not None:
                        sub_data["memory"] = (np.array(
                            datum["memory"])[composite_clbits[i]]).tolist()
                    else:
                        sub_data["memory"] = datum["memory"]
                marginalized_data[index].append(sub_data)

        # Sort by index
        return [marginalized_data[i] for i in sorted(marginalized_data.keys())]
コード例 #9
0
    def format_result(data_index, chunk):
        """Create new result object from partial result and marginalize."""
        new_result = deepcopy(result)
        new_result.results = []
        new_result.results.extend(result.results[data_index:data_index +
                                                 chunk])

        return marginal_counts(new_result, __reserved_registers)
コード例 #10
0
 def test_marginal_counts_result_memory_indices_None(self):
     """Test that a Result object containing memory marginalizes correctly."""
     result = self.generate_qiskit_result()
     memory = "should not be touched"
     result.results[0].data.memory = memory
     marginal_result = marginal_counts(result, indices=None)
     marginal_memory = marginal_result.results[0].data.memory
     self.assertEqual(marginal_memory, memory)
コード例 #11
0
    def test_marginal_counts_result_inplace(self):
        """Test that a Result object containing memory marginalizes correctly inplace."""
        result = self.generate_qiskit_result()

        marginal_result = marginal_counts(result, indices=[0], inplace=True)
        self.assertEqual(id(result), id(marginal_result))
        marginal_memory = marginal_result.results[0].data.memory
        self.assertEqual(marginal_memory, [hex(ii % 2) for ii in range(8)])
コード例 #12
0
 def test_marginal_counts_result_memory_nonzero_indices(self):
     """Test that a Result object containing memory marginalizes correctly."""
     result = self.generate_qiskit_result()
     index = 2
     marginal_result = marginal_counts(result, indices=[index])
     marginal_memory = marginal_result.results[0].data.memory
     mask = 1 << index
     expected = [hex((ii & mask) >> index) for ii in range(8)]
     self.assertEqual(marginal_memory, expected)
コード例 #13
0
def marginalizeCounts(counts, qubits):
    '''
    Input: List of buckets each of which holds multiple dicts denoting the counts 
    Output: All those dicts marginalized...i.e. holding 2 qubit keys instead of 7 qubit ones
    '''
    qubits = [i for i in range(qubits)]
    for i in range(len(counts)):
        for j in range(len(counts[i])):
            counts[i][j] = result.marginal_counts(counts[i][j], qubits)
    return counts 
コード例 #14
0
    def test_marginal_counts_result(self):
        """Test that a Result object containing counts marginalizes correctly."""
        raw_counts_1 = {
            '0x0': 4,
            '0x1': 7,
            '0x2': 10,
            '0x6': 5,
            '0x9': 11,
            '0xD': 9,
            '0xE': 8
        }
        data_1 = models.ExperimentResultData(counts=dict(**raw_counts_1))
        exp_result_header_1 = QobjExperimentHeader(creg_sizes=[['c0', 4]],
                                                   memory_slots=4)
        exp_result_1 = models.ExperimentResult(shots=54,
                                               success=True,
                                               data=data_1,
                                               header=exp_result_header_1)

        raw_counts_2 = {'0x2': 5, '0x3': 8}
        data_2 = models.ExperimentResultData(counts=dict(**raw_counts_2))
        exp_result_header_2 = QobjExperimentHeader(creg_sizes=[['c0', 2]],
                                                   memory_slots=2)
        exp_result_2 = models.ExperimentResult(shots=13,
                                               success=True,
                                               data=data_2,
                                               header=exp_result_header_2)

        result = Result(results=[exp_result_1, exp_result_2],
                        **self.base_result_args)

        expected_marginal_counts_1 = {'00': 4, '01': 27, '10': 23}
        expected_marginal_counts_2 = {'0': 5, '1': 8}

        self.assertEqual(
            marginal_counts(result, [0, 1]).get_counts(0),
            expected_marginal_counts_1)
        self.assertEqual(
            marginal_counts(result, [0]).get_counts(1),
            expected_marginal_counts_2)
コード例 #15
0
    def test_marginal_counts_with_dict(self):
        """Test the marginal_counts method with dictionary instead of Result object."""
        dict_counts_1 = {
            "0000": 4,
            "0001": 7,
            "0010": 10,
            "0110": 5,
            "1001": 11,
            "1101": 9,
            "1110": 8,
        }
        dict_counts_2 = {"10": 5, "11": 8}

        expected_marginal_counts_1 = {"00": 4, "01": 27, "10": 23}
        expected_marginal_counts_2 = {"0": 5, "1": 8}

        self.assertEqual(marginal_counts(dict_counts_1, [0, 1]),
                         expected_marginal_counts_1)
        self.assertEqual(marginal_counts(dict_counts_2, [0], inplace=True),
                         expected_marginal_counts_2)
        self.assertNotEqual(dict_counts_2, expected_marginal_counts_2)
        self.assertRaises(
            AttributeError,
            lambda: marginal_counts(dict_counts_1, [0, 1]).get_counts(0))
コード例 #16
0
    def test_marginal_counts_result_format(self):
        """Test that marginal_counts with format_marginal true properly formats output."""
        raw_counts_1 = {'0x0': 4, '0x1': 7, '0x2': 10, '0x6': 5, '0x9': 11, '0xD': 9, '0x12': 8}
        data_1 = models.ExperimentResultData(counts=dict(**raw_counts_1))
        exp_result_header_1 = QobjExperimentHeader(creg_sizes=[['c0', 2], ['c1', 3]],
                                                   memory_slots=5)
        exp_result_1 = models.ExperimentResult(shots=54, success=True, data=data_1,
                                               header=exp_result_header_1)

        result = Result(results=[exp_result_1], **self.base_result_args)

        expected_marginal_counts_1 = {'0_0 _0': 14, '0_0 _1': 18,
                                      '0_1 _0': 5, '0_1 _1': 9, '1_0 _0': 8}
        marginal_counts_result = marginal_counts(result.get_counts(), [0, 2, 4],
                                                 format_marginal=True)
        self.assertEqual(marginal_counts_result, expected_marginal_counts_1)
コード例 #17
0
    def _fitter_data(
        data: List[Dict[str, any]]
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, List[np.ndarray]]:
        """Return list a tuple of basis, frequency, shot data"""
        outcome_dict = {}
        meas_size = None
        prep_size = None

        for datum in data:
            # Get basis data
            metadata = datum["metadata"]
            meas_element = tuple(metadata["m_idx"])
            prep_element = tuple(
                metadata["p_idx"]) if "p_idx" in metadata else tuple()
            if meas_size is None:
                meas_size = len(meas_element)
            if prep_size is None:
                prep_size = len(prep_element)

            # Add outcomes
            counts = Counts(
                marginal_counts(datum["counts"],
                                metadata["clbits"])).int_outcomes()
            basis_key = (meas_element, prep_element)
            if basis_key in outcome_dict:
                TomographyAnalysis._append_counts(outcome_dict[basis_key],
                                                  counts)
            else:
                outcome_dict[basis_key] = counts

        num_basis = len(outcome_dict)
        measurement_data = np.zeros((num_basis, meas_size), dtype=int)
        preparation_data = np.zeros((num_basis, prep_size), dtype=int)
        shot_data = np.zeros(num_basis, dtype=int)
        outcome_data = []

        for i, (basis_key, counts) in enumerate(outcome_dict.items()):
            measurement_data[i] = basis_key[0]
            preparation_data[i] = basis_key[1]
            outcome_arr = np.zeros((len(counts), 2), dtype=int)
            for j, (outcome, freq) in enumerate(counts.items()):
                outcome_arr[j] = [outcome, freq]
                shot_data[i] += freq
            outcome_data.append(outcome_arr)
        return outcome_data, shot_data, measurement_data, preparation_data
コード例 #18
0
 def _generate_matrices(self, data) -> List[np.array]:
     num_qubits = len(data[0]["metadata"]["label"])
     counts = [None, None]
     for result in data:
         for i in range(2):
             if result["metadata"]["label"] == str(i) * num_qubits:
                 counts[i] = result["counts"]
     matrices = []
     for k in range(num_qubits):
         matrix = np.zeros([2, 2], dtype=float)
         marginalized_counts = []
         for i in range(2):
             marginalized_counts.append(marginal_counts(counts[i], [k]))
         # matrix[i][j] is the probability of counting i for expected j
         for i in range(2):
             for j in range(2):
                 matrix[i][j] = marginalized_counts[j][str(i)] / sum(
                     marginalized_counts[j].values())
         matrices.append(matrix)
     return matrices
コード例 #19
0
    def test_marginal_counts_result_creg_sizes(self):
        """Test that marginal_counts with Result input properly changes creg_sizes."""
        raw_counts = {'0x0': 4, '0x1': 7, '0x2': 10, '0x6': 5, '0x9': 11, '0xD': 9, '0xE': 8}
        data = models.ExperimentResultData(counts=dict(**raw_counts))
        exp_result_header = QobjExperimentHeader(creg_sizes=[['c0', 1], ['c1', 3]],
                                                 memory_slots=4)
        exp_result = models.ExperimentResult(shots=54, success=True, data=data,
                                             header=exp_result_header)

        result = Result(results=[exp_result], **self.base_result_args)

        expected_marginal_counts = {'0 0': 14, '0 1': 18, '1 0': 13, '1 1': 9}
        expected_creg_sizes = [['c0', 1], ['c1', 1]]
        expected_memory_slots = 2
        marginal_counts_result = marginal_counts(result, [0, 2])
        self.assertEqual(marginal_counts_result.results[0].header.creg_sizes,
                         expected_creg_sizes)
        self.assertEqual(marginal_counts_result.results[0].header.memory_slots,
                         expected_memory_slots)
        self.assertEqual(marginal_counts_result.get_counts(0),
                         expected_marginal_counts)
コード例 #20
0
    def _add_single_data(self, data):
        """Add data to the experiment"""
        # TODO: Handle optional marginalizing IQ data
        metadata = data.get("metadata", {})
        if metadata.get("experiment_type") == self._experiment._type:

            # Add parallel data
            self._data.append(data)

            # Add marginalized data to sub experiments
            if "composite_clbits" in metadata:
                composite_clbits = metadata["composite_clbits"]
            else:
                composite_clbits = None
            for i, index in enumerate(metadata["composite_index"]):
                sub_data = {"metadata": metadata["composite_metadata"][i]}
                if "counts" in data:
                    if composite_clbits is not None:
                        sub_data["counts"] = marginal_counts(data["counts"], composite_clbits[i])
                    else:
                        sub_data["counts"] = data["counts"]
                self._composite_expdata[index].add_data(sub_data)
コード例 #21
0
    def test_marginal_counts_inplace_false(self):
        """Test marginal_counts(Result, inplace=False) """
        raw_counts_1 = {'0x0': 4, '0x1': 7, '0x2': 10, '0x6': 5, '0x9': 11, '0xD': 9, '0xE': 8}
        data_1 = models.ExperimentResultData(counts=dict(**raw_counts_1))
        exp_result_header_1 = QobjExperimentHeader(creg_sizes=[['c0', 4]], memory_slots=4)
        exp_result_1 = models.ExperimentResult(shots=54, success=True, data=data_1,
                                               header=exp_result_header_1)

        raw_counts_2 = {'0x2': 5, '0x3': 8}
        data_2 = models.ExperimentResultData(counts=dict(**raw_counts_2))
        exp_result_header_2 = QobjExperimentHeader(creg_sizes=[['c0', 2]], memory_slots=2)
        exp_result_2 = models.ExperimentResult(shots=13, success=True, data=data_2,
                                               header=exp_result_header_2)

        result = Result(results=[exp_result_1, exp_result_2], **self.base_result_args)

        expected_marginal_counts = {'0': 27, '1': 27}

        self.assertEqual(marginal_counts(result, [0], inplace=False).get_counts(0),
                         expected_marginal_counts)
        self.assertNotEqual(result.get_counts(0),
                            expected_marginal_counts)
コード例 #22
0
    def test_marginal_counts_inplace_false(self):
        """Test marginal_counts(Result, inplace=False)"""
        raw_counts_1 = {
            "0x0": 4,
            "0x1": 7,
            "0x2": 10,
            "0x6": 5,
            "0x9": 11,
            "0xD": 9,
            "0xE": 8
        }
        data_1 = models.ExperimentResultData(counts=dict(**raw_counts_1))
        exp_result_header_1 = QobjExperimentHeader(creg_sizes=[["c0", 4]],
                                                   memory_slots=4)
        exp_result_1 = models.ExperimentResult(shots=54,
                                               success=True,
                                               data=data_1,
                                               header=exp_result_header_1)

        raw_counts_2 = {"0x2": 5, "0x3": 8}
        data_2 = models.ExperimentResultData(counts=dict(**raw_counts_2))
        exp_result_header_2 = QobjExperimentHeader(creg_sizes=[["c0", 2]],
                                                   memory_slots=2)
        exp_result_2 = models.ExperimentResult(shots=13,
                                               success=True,
                                               data=data_2,
                                               header=exp_result_header_2)

        result = Result(results=[exp_result_1, exp_result_2],
                        **self.base_result_args)

        expected_marginal_counts = {"0": 27, "1": 27}

        self.assertEqual(
            marginal_counts(result, [0], inplace=False).get_counts(0),
            expected_marginal_counts)
        self.assertNotEqual(result.get_counts(0), expected_marginal_counts)
コード例 #23
0
    def test_marginal_counts_result_marginalize_memory(self):
        """Test that a Result object containing memory marginalizes correctly inplace."""

        result = self.generate_qiskit_result()
        marginal_result = marginal_counts(result,
                                          indices=[0],
                                          inplace=True,
                                          marginalize_memory=False)
        self.assertFalse(hasattr(marginal_result.results[0].data, "memory"))
        result = self.generate_qiskit_result()
        marginal_result = marginal_counts(result,
                                          indices=[0],
                                          inplace=True,
                                          marginalize_memory=None)
        self.assertTrue(hasattr(marginal_result.results[0].data, "memory"))
        result = self.generate_qiskit_result()
        marginal_result = marginal_counts(result,
                                          indices=[0],
                                          inplace=True,
                                          marginalize_memory=True)
        self.assertTrue(hasattr(marginal_result.results[0].data, "memory"))

        result = self.generate_qiskit_result()
        marginal_result = marginal_counts(result,
                                          indices=[0],
                                          inplace=False,
                                          marginalize_memory=False)
        self.assertFalse(hasattr(marginal_result.results[0].data, "memory"))
        marginal_result = marginal_counts(result,
                                          indices=[0],
                                          inplace=False,
                                          marginalize_memory=None)
        self.assertTrue(hasattr(marginal_result.results[0].data, "memory"))
        marginal_result = marginal_counts(result,
                                          indices=[0],
                                          inplace=False,
                                          marginalize_memory=True)
        self.assertTrue(hasattr(marginal_result.results[0].data, "memory"))
コード例 #24
0
    def _fitter_data(
        data: List[Dict[str, any]],
        measurement_basis: Optional[MeasurementBasis] = None,
        measurement_qubits: Optional[Tuple[int, ...]] = None,
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
        """Return list a tuple of basis, frequency, shot data"""
        meas_size = None
        prep_size = None

        # Construct marginalized tomography count dicts
        outcome_dict = {}
        shots_dict = {}
        for datum in data:
            # Get basis data
            metadata = datum["metadata"]
            meas_element = tuple(
                metadata["m_idx"]) if "m_idx" in metadata else tuple()
            prep_element = tuple(
                metadata["p_idx"]) if "p_idx" in metadata else tuple()
            if meas_size is None:
                meas_size = len(meas_element)
            if prep_size is None:
                prep_size = len(prep_element)

            # Add outcomes
            counts = Counts(
                marginal_counts(datum["counts"], metadata["clbits"]))
            shots = datum.get("shots", sum(counts.values()))
            basis_key = (meas_element, prep_element)
            if basis_key in outcome_dict:
                TomographyAnalysis._append_counts(outcome_dict[basis_key],
                                                  counts)
                shots_dict[basis_key] += shots
            else:
                outcome_dict[basis_key] = counts
                shots_dict[basis_key] = shots

        # Construct function for converting count outcome dit-strings into
        # integers based on the specified number of outcomes of the measurement
        # bases on each qubit
        if meas_size == 0:
            # Trivial case with no measurement
            num_outcomes = 1
            outcome_func = lambda _: 1
        elif measurement_basis is None:
            # If no basis is provided assume N-qubit measurement case
            num_outcomes = 2**meas_size
            outcome_func = lambda outcome: int(outcome, 2)
        else:
            # General measurement basis case for arbitrary outcome measurements
            if measurement_qubits is None:
                measurement_qubits = tuple(range(meas_size))
            elif len(measurement_qubits) != meas_size:
                raise AnalysisError(
                    "Specified number of measurementqubits does not match data."
                )
            outcome_shape = measurement_basis.outcome_shape(measurement_qubits)
            num_outcomes = np.prod(outcome_shape)
            outcome_func = _int_outcome_function(outcome_shape)

        num_basis = len(outcome_dict)
        measurement_data = np.zeros((num_basis, meas_size), dtype=int)
        preparation_data = np.zeros((num_basis, prep_size), dtype=int)
        shot_data = np.zeros(num_basis, dtype=int)
        outcome_data = np.zeros((num_basis, num_outcomes), dtype=int)

        for i, (basis_key, counts) in enumerate(outcome_dict.items()):
            measurement_data[i] = basis_key[0]
            preparation_data[i] = basis_key[1]
            shot_data[i] = shots_dict[basis_key]
            for outcome, freq in counts.items():
                outcome_data[i][outcome_func(outcome)] = freq
        return outcome_data, shot_data, measurement_data, preparation_data
コード例 #25
0
    def test_marginal_counts_result_invalid_indices(self):
        """Test that a Result object containing memory marginalizes correctly inplace."""

        result = self.generate_qiskit_result()
        with self.assertRaises(QiskitError):
            _ = marginal_counts(result, indices=[0, 1, 100], inplace=True)
コード例 #26
0
    def _marginalized_component_data(
            self, composite_data: List[Dict]) -> List[List[Dict]]:
        """Return marginalized data for component experiments.

        Args:
            composite_data: a list of composite experiment circuit data.

        Returns:
            A List of lists of marginalized circuit data for each component
            experiment in the composite experiment.
        """
        # Marginalize data
        marginalized_data = {}
        for datum in composite_data:
            metadata = datum.get("metadata", {})

            # Add marginalized data to sub experiments
            if "composite_clbits" in metadata:
                composite_clbits = metadata["composite_clbits"]
            else:
                composite_clbits = None

            # Pre-process the memory if any to avoid redundant calls to format_counts_memory
            f_memory = self._format_memory(datum, composite_clbits)

            for i, index in enumerate(metadata["composite_index"]):
                if index not in marginalized_data:
                    # Initialize data list for marginalized
                    marginalized_data[index] = []
                sub_data = {"metadata": metadata["composite_metadata"][i]}
                if "counts" in datum:
                    if composite_clbits is not None:
                        sub_data["counts"] = marginal_counts(
                            datum["counts"], composite_clbits[i])
                    else:
                        sub_data["counts"] = datum["counts"]
                if "memory" in datum:
                    if composite_clbits is not None:
                        # level 2
                        if f_memory is not None:
                            idx = slice(-1 - composite_clbits[i][-1],
                                        -composite_clbits[i][0] or None)
                            sub_data["memory"] = [
                                shot[idx] for shot in f_memory
                            ]
                        # level 1
                        else:
                            mem = np.array(datum["memory"])

                            # Averaged level 1 data
                            if len(mem.shape) == 2:
                                sub_data["memory"] = mem[
                                    composite_clbits[i]].tolist()
                            # Single-shot level 1 data
                            if len(mem.shape) == 3:
                                sub_data["memory"] = mem[:, composite_clbits[
                                    i]].tolist()
                    else:
                        sub_data["memory"] = datum["memory"]
                marginalized_data[index].append(sub_data)

        # Sort by index
        return [marginalized_data[i] for i in sorted(marginalized_data.keys())]