コード例 #1
0
    def aggregregate_measurements(
        self,
        jobs: List[IBMQJob],
        batches: List[List[QuantumCircuit]],
        multiplicities: List[int],
        **kwargs,
    ) -> List[Measurements]:
        """Combine samples from a circuit set that has been expanded and batched
        to obtain a set of measurements for each of the original circuits. Also
        applies readout correction after combining.

        Args:
            jobs: The submitted IBMQ jobs.
            batches: The batches of experiments submitted.
            multiplicities: The number of copies of each of the original
                circuits.
            kwargs: Passed to self.apply_readout_correction.

        Returns:
            A list of list of measurements, where each list of measurements
            corresponds to one of the circuits of the original (unexpanded)
            circuit set.
        """
        ibmq_circuit_counts_set = []
        for job, batch in zip(jobs, batches):
            for experiment in batch:
                ibmq_circuit_counts_set.append(job.result().get_counts(experiment))

        measurements_set = []
        ibmq_circuit_index = 0
        for multiplicity in multiplicities:
            combined_counts = Counts({})
            for i in range(multiplicity):
                for bitstring, counts in ibmq_circuit_counts_set[
                    ibmq_circuit_index
                ].items():
                    combined_counts[bitstring] = (
                        combined_counts.get(bitstring, 0) + counts
                    )
                ibmq_circuit_index += 1

            if self.readout_correction:
                combined_counts = self.apply_readout_correction(combined_counts, kwargs)

            # qiskit counts object maps bitstrings in reversed order to ints, so we must
            # flip the bitstrings
            reversed_counts = {}
            for bitstring in combined_counts.keys():
                reversed_counts[bitstring[::-1]] = int(combined_counts[bitstring])

            measurements = Measurements.from_counts(reversed_counts)
            measurements_set.append(measurements)

        return measurements_set
コード例 #2
0
    def test_qubits_parameter(self, circuits_data):
        """Test whether the qubits parameter is handled correctly"""
        counts_ideal_012 = Counts({"000": 5000, "001": 5000})
        counts_ideal_210 = Counts({"000": 5000, "100": 5000})
        counts_ideal_102 = Counts({"000": 5000, "010": 5000})
        counts_noise = Counts({
            "000": 4844,
            "001": 4962,
            "100": 56,
            "101": 65,
            "011": 37,
            "010": 35,
            "110": 1
        })
        CRM = CorrelatedReadoutMitigator(
            circuits_data["correlated_method_matrix"])
        LRM = LocalReadoutMitigator(circuits_data["local_method_matrices"])
        mitigators = [CRM, LRM]
        for mitigator in mitigators:
            mitigated_probs_012 = (mitigator.quasi_probabilities(
                counts_noise, qubits=[
                    0, 1, 2
                ]).nearest_probability_distribution().binary_probabilities())
            mitigated_error = self.compare_results(counts_ideal_012,
                                                   mitigated_probs_012)
            self.assertTrue(
                mitigated_error < 0.001,
                "Mitigator {} did not correctly handle qubit order 0, 1, 2".
                format(mitigator),
            )

            mitigated_probs_210 = (mitigator.quasi_probabilities(
                counts_noise, qubits=[
                    2, 1, 0
                ]).nearest_probability_distribution().binary_probabilities())
            mitigated_error = self.compare_results(counts_ideal_210,
                                                   mitigated_probs_210)
            self.assertTrue(
                mitigated_error < 0.001,
                "Mitigator {} did not correctly handle qubit order 2, 1, 0".
                format(mitigator),
            )

            mitigated_probs_102 = (mitigator.quasi_probabilities(
                counts_noise, qubits=[
                    1, 0, 2
                ]).nearest_probability_distribution().binary_probabilities())
            mitigated_error = self.compare_results(counts_ideal_102,
                                                   mitigated_probs_102)
            self.assertTrue(
                mitigated_error < 0.001,
                "Mitigator {} did not correctly handle qubit order 1, 0, 2".
                format(mitigator),
            )
コード例 #3
0
    def test_qubits_subset_parameter(self, circuits_data):
        """Tests mitigation on a subset of the initial set of qubits."""
        counts_ideal_2 = Counts({"0": 5000, "1": 5000})
        counts_ideal_6 = Counts({"0": 10000})

        counts_noise = Counts({
            "000": 4844,
            "001": 4962,
            "100": 56,
            "101": 65,
            "011": 37,
            "010": 35,
            "110": 1
        })
        CRM = CorrelatedReadoutMitigator(
            circuits_data["correlated_method_matrix"], qubits=[2, 4, 6])
        LRM = LocalReadoutMitigator(circuits_data["local_method_matrices"],
                                    qubits=[2, 4, 6])
        mitigators = [CRM, LRM]
        for mitigator in mitigators:
            mitigated_probs_2 = (mitigator.quasi_probabilities(
                counts_noise, qubits=[
                    2
                ]).nearest_probability_distribution().binary_probabilities())
            mitigated_error = self.compare_results(counts_ideal_2,
                                                   mitigated_probs_2)
            self.assertTrue(
                mitigated_error < 0.001,
                "Mitigator {} did not correctly handle qubit subset".format(
                    mitigator),
            )

            mitigated_probs_6 = (mitigator.quasi_probabilities(
                counts_noise, qubits=[
                    6
                ]).nearest_probability_distribution().binary_probabilities())
            mitigated_error = self.compare_results(counts_ideal_6,
                                                   mitigated_probs_6)
            self.assertTrue(
                mitigated_error < 0.001,
                "Mitigator {} did not correctly handle qubit subset".format(
                    mitigator),
            )
            diagonal = str2diag("ZZ")
            ideal_expectation = 0
            mitigated_expectation, _ = mitigator.expectation_value(
                counts_noise, diagonal, qubits=[2, 6])
            mitigated_error = np.abs(ideal_expectation - mitigated_expectation)
            self.assertTrue(
                mitigated_error < 0.1,
                "Mitigator {} did not improve circuit expectation".format(
                    mitigator),
            )
コード例 #4
0
    def test_save_probabilities_dict(self, qubits):
        """Test save probabilities dict instruction"""

        SUPPORTED_METHODS = [
            'automatic', 'statevector', 'statevector_gpu',
            'statevector_thrust', 'density_matrix', 'density_matrix_gpu',
            'density_matrix_thrust', 'matrix_product_state', 'stabilizer'
        ]

        circ = QuantumCircuit(3)
        circ.x(0)
        circ.h(1)
        circ.cx(1, 2)

        # Target probabilities
        state = qi.Statevector(circ)
        target = state.probabilities_dict(qubits)

        # Snapshot circuit
        label = 'probs'
        opts = self.BACKEND_OPTS.copy()
        circ = transpile(circ, self.SIMULATOR)
        circ.save_probabilities_dict(qubits, label)
        qobj = assemble(circ)
        result = self.SIMULATOR.run(qobj, **opts).result()
        method = opts.get('method', 'automatic')
        if method not in SUPPORTED_METHODS:
            self.assertFalse(result.success)
        else:
            self.assertTrue(result.success)
            value = Counts(result.data(0)[label], memory_slots=len(qubits))
            self.assertDictAlmostEqual(value, target)
コード例 #5
0
 def simulate_circuit(circuit, assignment_matrix, num_qubits, shots=1024):
     """Simulates the given circuit under the given readout noise"""
     probs = Statevector.from_instruction(circuit).probabilities()
     noisy_probs = assignment_matrix @ probs
     labels = [bin(a)[2:].zfill(num_qubits) for a in range(2**num_qubits)]
     results = TestReadoutMitigation.rng.choice(labels, size=shots, p=noisy_probs)
     return Counts(dict(Counter(results)))
コード例 #6
0
 def test_expectation_value_endian(self):
     """Test that endian for expval is little."""
     mitigators = self.mitigators(self.assignment_matrices())
     counts = Counts({"10": 3, "11": 24, "00": 74, "01": 923})
     for mitigator in mitigators:
         expval, _ = mitigator.expectation_value(counts, diagonal="IZ", qubits=[0, 1])
         self.assertAlmostEqual(expval, -1.0, places=0)
コード例 #7
0
    def test_qubits_parameter(self):
        """Test whether the qubits parameter is handled correctly"""
        shots = 10000
        assignment_matrices = self.assignment_matrices()
        mitigators = self.mitigators(assignment_matrices)
        circuit, _, _ = self.first_qubit_h_3_circuit()
        counts_ideal, counts_noise, _ = self.counts_data(circuit, assignment_matrices, shots)
        counts_ideal_012 = counts_ideal
        counts_ideal_210 = Counts({"000": counts_ideal["000"], "100": counts_ideal["001"]})
        counts_ideal_102 = Counts({"000": counts_ideal["000"], "010": counts_ideal["001"]})

        for mitigator in mitigators:
            mitigated_probs_012 = (
                mitigator.quasi_probabilities(counts_noise, qubits=[0, 1, 2])
                .nearest_probability_distribution()
                .binary_probabilities(num_bits=3)
            )
            mitigated_error = self.compare_results(counts_ideal_012, mitigated_probs_012)
            self.assertLess(
                mitigated_error,
                0.001,
                "Mitigator {} did not correctly handle qubit order 0, 1, 2".format(mitigator),
            )

            mitigated_probs_210 = (
                mitigator.quasi_probabilities(counts_noise, qubits=[2, 1, 0])
                .nearest_probability_distribution()
                .binary_probabilities(num_bits=3)
            )
            mitigated_error = self.compare_results(counts_ideal_210, mitigated_probs_210)
            self.assertLess(
                mitigated_error,
                0.001,
                "Mitigator {} did not correctly handle qubit order 2, 1, 0".format(mitigator),
            )

            mitigated_probs_102 = (
                mitigator.quasi_probabilities(counts_noise, qubits=[1, 0, 2])
                .nearest_probability_distribution()
                .binary_probabilities(num_bits=3)
            )
            mitigated_error = self.compare_results(counts_ideal_102, mitigated_probs_102)
            self.assertLess(
                mitigated_error,
                0.001,
                "Mitigator {} did not correctly handle qubit order 1, 0, 2".format(mitigator),
            )
コード例 #8
0
 def test_expectation_improvement(self, circuits_data):
     """Test whether readout mitigation led to more accurate results
     and that its standard deviation is increased"""
     CRM = CorrelatedReadoutMitigator(
         circuits_data["correlated_method_matrix"])
     LRM = LocalReadoutMitigator(circuits_data["local_method_matrices"])
     num_qubits = circuits_data["num_qubits"]
     diagonals = []
     diagonals.append(z_diagonal(2**num_qubits))
     diagonals.append("IZ0")
     diagonals.append("ZZZ")
     diagonals.append("101")
     diagonals.append("IZI")
     mitigators = [CRM, LRM]
     qubit_index = {i: i for i in range(num_qubits)}
     for circuit_name, circuit_data in circuits_data["circuits"].items():
         counts_ideal = Counts(circuit_data["counts_ideal"])
         counts_noise = Counts(circuit_data["counts_noise"])
         probs_ideal, _ = counts_probability_vector(counts_ideal,
                                                    qubit_index=qubit_index)
         probs_noise, _ = counts_probability_vector(counts_noise,
                                                    qubit_index=qubit_index)
         for diagonal in diagonals:
             if isinstance(diagonal, str):
                 diagonal = str2diag(diagonal)
             unmitigated_expectation, unmitigated_stddev = expval_with_stddev(
                 diagonal, probs_noise, shots=counts_noise.shots())
             ideal_expectation = np.dot(probs_ideal, diagonal)
             unmitigated_error = np.abs(ideal_expectation -
                                        unmitigated_expectation)
             for mitigator in mitigators:
                 mitigated_expectation, mitigated_stddev = mitigator.expectation_value(
                     counts_noise, diagonal)
                 mitigated_error = np.abs(ideal_expectation -
                                          mitigated_expectation)
                 self.assertTrue(
                     mitigated_error < unmitigated_error,
                     "Mitigator {} did not improve circuit {} measurements".
                     format(mitigator, circuit_name),
                 )
                 self.assertTrue(
                     mitigated_stddev >= unmitigated_stddev,
                     "Mitigator {} did not increase circuit {} the standard deviation"
                     .format(mitigator, circuit_name),
                 )
コード例 #9
0
    def _fitter_data(
        data: List[Dict[str, any]]
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, List[np.ndarray]]:
        """Return list a tuple of basis, frequency, shot data"""
        outcome_dict = {}
        meas_size = None
        prep_size = None

        for datum in data:
            # Get basis data
            metadata = datum["metadata"]
            meas_element = tuple(metadata["m_idx"])
            prep_element = tuple(
                metadata["p_idx"]) if "p_idx" in metadata else tuple()
            if meas_size is None:
                meas_size = len(meas_element)
            if prep_size is None:
                prep_size = len(prep_element)

            # Add outcomes
            counts = Counts(
                marginal_counts(datum["counts"],
                                metadata["clbits"])).int_outcomes()
            basis_key = (meas_element, prep_element)
            if basis_key in outcome_dict:
                TomographyAnalysis._append_counts(outcome_dict[basis_key],
                                                  counts)
            else:
                outcome_dict[basis_key] = counts

        num_basis = len(outcome_dict)
        measurement_data = np.zeros((num_basis, meas_size), dtype=int)
        preparation_data = np.zeros((num_basis, prep_size), dtype=int)
        shot_data = np.zeros(num_basis, dtype=int)
        outcome_data = []

        for i, (basis_key, counts) in enumerate(outcome_dict.items()):
            measurement_data[i] = basis_key[0]
            preparation_data[i] = basis_key[1]
            outcome_arr = np.zeros((len(counts), 2), dtype=int)
            for j, (outcome, freq) in enumerate(counts.items()):
                outcome_arr[j] = [outcome, freq]
                shot_data[i] += freq
            outcome_data.append(outcome_arr)
        return outcome_data, shot_data, measurement_data, preparation_data
コード例 #10
0
    def test_repeated_qubits_parameter(self, circuits_data):
        """Tests the order of mitigated qubits."""
        counts_ideal_012 = Counts({"000": 5000, "001": 5000})
        counts_ideal_210 = Counts({"000": 5000, "100": 5000})
        counts_noise = Counts({
            "000": 4844,
            "001": 4962,
            "100": 56,
            "101": 65,
            "011": 37,
            "010": 35,
            "110": 1
        })
        CRM = CorrelatedReadoutMitigator(
            circuits_data["correlated_method_matrix"], qubits=[0, 1, 2])
        LRM = LocalReadoutMitigator(circuits_data["local_method_matrices"],
                                    qubits=[0, 1, 2])
        mitigators = [CRM, LRM]
        for mitigator in mitigators:
            mitigated_probs_210 = (mitigator.quasi_probabilities(
                counts_noise, qubits=[
                    2, 1, 0
                ]).nearest_probability_distribution().binary_probabilities())
            mitigated_error = self.compare_results(counts_ideal_210,
                                                   mitigated_probs_210)
            self.assertTrue(
                mitigated_error < 0.001,
                "Mitigator {} did not correctly handle qubit order 2,1,0".
                format(mitigator),
            )

            # checking qubit order 2,1,0 should not "overwrite" the default 0,1,2
            mitigated_probs_012 = (
                mitigator.quasi_probabilities(counts_noise).
                nearest_probability_distribution().binary_probabilities())
            mitigated_error = self.compare_results(counts_ideal_012,
                                                   mitigated_probs_012)
            self.assertTrue(
                mitigated_error < 0.001,
                "Mitigator {} did not correctly handle qubit order 0,1,2 (the expected default)"
                .format(mitigator),
            )
コード例 #11
0
 def test_mitigation_improvement(self, circuits_data):
     """Test whether readout mitigation led to more accurate results"""
     CRM = CorrelatedReadoutMitigator(
         circuits_data["correlated_method_matrix"])
     LRM = LocalReadoutMitigator(circuits_data["local_method_matrices"])
     mitigators = [CRM, LRM]
     for circuit_name, circuit_data in circuits_data["circuits"].items():
         counts_ideal = Counts(circuit_data["counts_ideal"])
         counts_noise = Counts(circuit_data["counts_noise"])
         probs_noise = {
             key: value / circuits_data["shots"]
             for key, value in counts_noise.items()
         }
         unmitigated_error = self.compare_results(counts_ideal,
                                                  counts_noise)
         # TODO: verify mitigated stddev is larger
         unmitigated_stddev = stddev(probs_noise, circuits_data["shots"])
         for mitigator in mitigators:
             mitigated_quasi_probs = mitigator.quasi_probabilities(
                 counts_noise)
             mitigated_probs = (
                 mitigated_quasi_probs.nearest_probability_distribution(
                 ).binary_probabilities())
             mitigated_error = self.compare_results(counts_ideal,
                                                    mitigated_probs)
             self.assertTrue(
                 mitigated_error < unmitigated_error * 0.8,
                 "Mitigator {} did not improve circuit {} measurements".
                 format(mitigator, circuit_name),
             )
             mitigated_stddev_upper_bound = mitigated_quasi_probs._stddev_upper_bound
             max_unmitigated_stddev = max(unmitigated_stddev.values())
             self.assertTrue(
                 mitigated_stddev_upper_bound >= max_unmitigated_stddev,
                 "Mitigator {} on circuit {} gave stddev upper bound {} "
                 "while unmitigated stddev maximum is {}".format(
                     mitigator,
                     circuit_name,
                     mitigated_stddev_upper_bound,
                     max_unmitigated_stddev,
                 ),
             )
コード例 #12
0
def counts_probability_vector(
        counts: Counts,
        qubits: Optional[List[int]] = None,
        clbits: Optional[List[int]] = None,
        num_qubits: Optional[int] = None,
        return_shots: Optional[bool] = False) -> np.ndarray:
    """Compute mitigated expectation value.

    Args:
        counts: counts object
        qubits: qubits the count bitstrings correspond to.
        clbits: Optional, marginalize counts to just these bits.
        num_qubits: the total number of qubits.
        return_shots: return the number of shots.

    Raises:
        QiskitError: if qubit and clbit kwargs are not valid.

    Returns:
        np.ndarray: a probability vector for all count outcomes.
    """
    # Marginalize counts
    if clbits is not None:
        counts = marginal_counts(counts, meas_qubits=clbits)

    # Get total number of qubits
    if num_qubits is None:
        num_qubits = len(next(iter(counts)))

    # Get vector
    vec = np.zeros(2**num_qubits, dtype=float)
    shots = 0
    for key, val in counts.items():
        shots += val
        vec[int(key, 2)] = val
    vec /= shots

    # Remap qubits
    if qubits is not None:
        if len(qubits) != num_qubits:
            raise QiskitError("Num qubits does not match vector length.")
        axes = [num_qubits - 1 - i for i in reversed(np.argsort(qubits))]
        vec = np.reshape(vec,
                         num_qubits * [2]).transpose(axes).reshape(vec.shape)
    if return_shots:
        return vec, shots
    return vec
コード例 #13
0
    def _test_save_probabilities_dict(self, qubits, **options):
        """Test save probabilities dict instruction"""
        backend = self.backend(**options)

        circ = QuantumCircuit(3)
        circ.x(0)
        circ.h(1)
        circ.cx(1, 2)

        # Target probabilities
        state = qi.Statevector(circ)
        target = state.probabilities_dict(qubits)

        # Snapshot circuit
        label = 'probs'
        circ.save_probabilities_dict(qubits, label=label)
        result = backend.run(transpile(circ, backend, optimization_level=0),
                             shots=1).result()
        self.assertTrue(result.success)
        simdata = result.data(0)
        self.assertIn(label, simdata)
        value = Counts(result.data(0)[label], memory_slots=len(qubits))
        self.assertDictAlmostEqual(value, target)
コード例 #14
0
    def test_repeated_qubits_parameter(self):
        """Tests the order of mitigated qubits."""
        shots = 10000
        assignment_matrices = self.assignment_matrices()
        mitigators = self.mitigators(assignment_matrices, qubits=[0, 1, 2])
        circuit, _, _ = self.first_qubit_h_3_circuit()
        counts_ideal, counts_noise, _ = self.counts_data(circuit, assignment_matrices, shots)
        counts_ideal_012 = counts_ideal
        counts_ideal_210 = Counts({"000": counts_ideal["000"], "100": counts_ideal["001"]})

        for mitigator in mitigators:
            mitigated_probs_210 = (
                mitigator.quasi_probabilities(counts_noise, qubits=[2, 1, 0])
                .nearest_probability_distribution()
                .binary_probabilities(num_bits=3)
            )
            mitigated_error = self.compare_results(counts_ideal_210, mitigated_probs_210)
            self.assertLess(
                mitigated_error,
                0.001,
                "Mitigator {} did not correctly handle qubit order 2,1,0".format(mitigator),
            )

            # checking qubit order 2,1,0 should not "overwrite" the default 0,1,2
            mitigated_probs_012 = (
                mitigator.quasi_probabilities(counts_noise)
                .nearest_probability_distribution()
                .binary_probabilities(num_bits=3)
            )
            mitigated_error = self.compare_results(counts_ideal_012, mitigated_probs_012)
            self.assertLess(
                mitigated_error,
                0.001,
                "Mitigator {} did not correctly handle qubit order 0,1,2 (the expected default)".format(
                    mitigator
                ),
            )
コード例 #15
0
def expectation_value(
    counts: Counts,
    diagonal: Optional[np.ndarray] = None,
    qubits: Optional[List[int]] = None,
    clbits: Optional[List[int]] = None,
    meas_mitigator: Optional = None,
) -> Tuple[float, float]:
    r"""Compute the expectation value of a diagonal operator from counts.

    This computes the estimator of
    :math:`\langle O \rangle = \mbox{Tr}[\rho. O]`, optionally with measurement
    error mitigation, of a diagonal observable
    :math:`O = \sum_{x\in\{0, 1\}^n} O(x)|x\rangle\!\langle x|`.

    Args:
        counts: counts object
        diagonal: Optional, the vector of diagonal values for summing the
                    expectation value. If ``None`` the the default value is
                    :math:`[1, -1]^\otimes n`.
        qubits: Optional, the measured physical qubits the count
                bitstrings correspond to. If None qubits are assumed to be
                :math:`[0, ..., n-1]`.
        clbits: Optional, if not None marginalize counts to the specified bits.
        meas_mitigator: Optional, a measurement mitigator to apply mitigation.

    Returns:
        (float, float): the expectation value and standard deviation.

    Additional Information:
        The diagonal observable :math:`O` is input using the ``diagonal``
        kwarg as a list or Numpy array :math:`[O(0), ..., O(2^n -1)]`. If
        no diagonal is specified the diagonal of the Pauli operator
        :math:`O = \mbox{diag}(Z^{\otimes n}) = [1, -1]^{\otimes n}` is used.

        The ``clbits`` kwarg is used to marginalize the input counts dictionary
        over the specified bit-values, and the ``qubits`` kwarg is used to specify
        which physical qubits these bit-values correspond to as
        ``circuit.measure(qubits, clbits)``.

        For calibrating a expval measurement error mitigator for the
        ``meas_mitigator`` kwarg see
        :func:`qiskit.ignis.mitigation.expval_meas_mitigator_circuits` and
        :class:`qiskit.ignis.mitigation.ExpvalMeasMitigatorFitter`.
    """
    if meas_mitigator is not None:
        # Use mitigator expectation value method
        return meas_mitigator.expectation_value(counts,
                                                diagonal=diagonal,
                                                clbits=clbits,
                                                qubits=qubits)

    # Marginalize counts
    if clbits is not None:
        counts = marginal_counts(counts, meas_qubits=clbits)

    # Get counts shots and probabilities
    probs = np.array(list(counts.values()))
    shots = probs.sum()
    probs = probs / shots

    # Get diagonal operator coefficients
    if diagonal is None:
        coeffs = np.array([(-1)**(key.count('1') % 2)
                           for key in counts.keys()],
                          dtype=probs.dtype)
    else:
        diagonal = np.asarray(diagonal)
        keys = [int(key, 2) for key in counts.keys()]
        coeffs = np.asarray(diagonal[keys], dtype=probs.dtype)

    return _expval_with_stddev(coeffs, probs, shots)
コード例 #16
0
    def _fitter_data(
        data: List[Dict[str, any]],
        measurement_basis: Optional[MeasurementBasis] = None,
        measurement_qubits: Optional[Tuple[int, ...]] = None,
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
        """Return list a tuple of basis, frequency, shot data"""
        meas_size = None
        prep_size = None

        # Construct marginalized tomography count dicts
        outcome_dict = {}
        shots_dict = {}
        for datum in data:
            # Get basis data
            metadata = datum["metadata"]
            meas_element = tuple(
                metadata["m_idx"]) if "m_idx" in metadata else tuple()
            prep_element = tuple(
                metadata["p_idx"]) if "p_idx" in metadata else tuple()
            if meas_size is None:
                meas_size = len(meas_element)
            if prep_size is None:
                prep_size = len(prep_element)

            # Add outcomes
            counts = Counts(
                marginal_counts(datum["counts"], metadata["clbits"]))
            shots = datum.get("shots", sum(counts.values()))
            basis_key = (meas_element, prep_element)
            if basis_key in outcome_dict:
                TomographyAnalysis._append_counts(outcome_dict[basis_key],
                                                  counts)
                shots_dict[basis_key] += shots
            else:
                outcome_dict[basis_key] = counts
                shots_dict[basis_key] = shots

        # Construct function for converting count outcome dit-strings into
        # integers based on the specified number of outcomes of the measurement
        # bases on each qubit
        if meas_size == 0:
            # Trivial case with no measurement
            num_outcomes = 1
            outcome_func = lambda _: 1
        elif measurement_basis is None:
            # If no basis is provided assume N-qubit measurement case
            num_outcomes = 2**meas_size
            outcome_func = lambda outcome: int(outcome, 2)
        else:
            # General measurement basis case for arbitrary outcome measurements
            if measurement_qubits is None:
                measurement_qubits = tuple(range(meas_size))
            elif len(measurement_qubits) != meas_size:
                raise AnalysisError(
                    "Specified number of measurementqubits does not match data."
                )
            outcome_shape = measurement_basis.outcome_shape(measurement_qubits)
            num_outcomes = np.prod(outcome_shape)
            outcome_func = _int_outcome_function(outcome_shape)

        num_basis = len(outcome_dict)
        measurement_data = np.zeros((num_basis, meas_size), dtype=int)
        preparation_data = np.zeros((num_basis, prep_size), dtype=int)
        shot_data = np.zeros(num_basis, dtype=int)
        outcome_data = np.zeros((num_basis, num_outcomes), dtype=int)

        for i, (basis_key, counts) in enumerate(outcome_dict.items()):
            measurement_data[i] = basis_key[0]
            preparation_data[i] = basis_key[1]
            shot_data[i] = shots_dict[basis_key]
            for outcome, freq in counts.items():
                outcome_data[i][outcome_func(outcome)] = freq
        return outcome_data, shot_data, measurement_data, preparation_data