コード例 #1
0
    def _populate_driver_result_molecule(
            self, driver_result: ElectronicStructureDriverResult) -> None:
        geometry: List[Tuple[str, List[float]]] = []
        for atom in self._mol.atoms:
            atuple = atom.atuple()
            geometry.append(
                (PERIODIC_TABLE[atuple[0]], [a * BOHR for a in atuple[1:]]))

        driver_result.molecule = Molecule(geometry,
                                          multiplicity=self._mol.multiplicity,
                                          charge=self._mol.charge)
コード例 #2
0
    def _populate_driver_result_molecule(
        self, driver_result: ElectronicStructureDriverResult
    ) -> None:
        coords = self._mol.atom_coords(unit="Angstrom")
        geometry = [(self._mol.atom_pure_symbol(i), list(xyz)) for i, xyz in enumerate(coords)]

        driver_result.molecule = Molecule(
            geometry,
            multiplicity=self._spin + 1,
            charge=self._charge,
            masses=list(self._mol.atom_mass_list()),
        )
コード例 #3
0
    def transform(
        self, grouped_property: GroupedSecondQuantizedProperty
    ) -> GroupedElectronicProperty:
        """Reduces the given `GroupedElectronicProperty` to a given active space.

        Args:
            grouped_property: the `GroupedElectronicProperty` to be transformed.

        Returns:
            A new `GroupedElectronicProperty` instance.

        Raises:
            QiskitNatureError: If the provided `GroupedElectronicProperty` does not contain a
                               `ParticleNumber` or `ElectronicBasisTransform` instance, if more
                               electrons or orbitals are requested than are available, or if the
                               number of selected active orbital indices does not match
                               `num_molecular_orbitals`.
        """
        if not isinstance(grouped_property, GroupedElectronicProperty):
            raise QiskitNatureError(
                "Only `GroupedElectronicProperty` objects can be transformed by this Transformer, "
                f"not objects of type, {type(grouped_property)}.")

        particle_number = grouped_property.get_property(ParticleNumber)
        if particle_number is None:
            raise QiskitNatureError(
                "The provided `GroupedElectronicProperty` does not contain a `ParticleNumber` "
                "property, which is required by this transformer!")
        particle_number = cast(ParticleNumber, particle_number)

        electronic_basis_transform = grouped_property.get_property(
            ElectronicBasisTransform)
        if electronic_basis_transform is None:
            raise QiskitNatureError(
                "The provided `GroupedElectronicProperty` does not contain an "
                "`ElectronicBasisTransform` property, which is required by this transformer!"
            )
        electronic_basis_transform = cast(ElectronicBasisTransform,
                                          electronic_basis_transform)

        # get molecular orbital occupation numbers
        occupation_alpha = particle_number.occupation_alpha
        occupation_beta = particle_number.occupation_beta
        self._mo_occ_total = occupation_alpha + occupation_beta

        # determine the active space
        self._active_orbs_indices, inactive_orbs_idxs = self._determine_active_space(
            grouped_property)

        # get molecular orbital coefficients
        coeff_alpha = electronic_basis_transform.coeff_alpha
        coeff_beta = electronic_basis_transform.coeff_beta

        # initialize size-reducing basis transformation
        self._transform_active = ElectronicBasisTransform(
            ElectronicBasis.AO,
            ElectronicBasis.MO,
            coeff_alpha[:, self._active_orbs_indices],
            coeff_beta[:, self._active_orbs_indices],
        )

        # compute inactive density matrix
        def _inactive_density(mo_occ, mo_coeff):
            return np.dot(
                mo_coeff[:, inactive_orbs_idxs] * mo_occ[inactive_orbs_idxs],
                np.transpose(mo_coeff[:, inactive_orbs_idxs]),
            )

        self._density_inactive = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (
                _inactive_density(occupation_alpha, coeff_alpha),
                _inactive_density(occupation_beta, coeff_beta),
            ),
        )

        # construct new GroupedElectronicProperty
        grouped_property_transformed = ElectronicStructureDriverResult()
        grouped_property_transformed = self._transform_property(
            grouped_property)  # type: ignore
        grouped_property_transformed.molecule = (
            grouped_property.molecule  # type: ignore[attr-defined]
        )

        return grouped_property_transformed
コード例 #4
0
    def _parse_matrix_file(fname: str, useao2e: bool = False) -> ElectronicStructureDriverResult:
        """
        get_driver_class is used here because the discovery routine will load all the gaussian
        binary dependencies, if not loaded already. It won't work without it.
        """
        try:
            # add gauopen to sys.path so that binaries can be loaded
            gauopen_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "gauopen")
            if gauopen_directory not in sys.path:
                sys.path.insert(0, gauopen_directory)
            # pylint: disable=import-outside-toplevel
            from .gauopen.QCMatEl import MatEl
        except ImportError as mnfe:
            msg = (
                (
                    "qcmatrixio extension not found. "
                    "See Gaussian driver readme to build qcmatrixio.F using f2py"
                )
                if mnfe.name == "qcmatrixio"
                else str(mnfe)
            )

            logger.info(msg)
            raise QiskitNatureError(msg) from mnfe

        mel = MatEl(file=fname)
        logger.debug("MatrixElement file:\n%s", mel)

        driver_result = ElectronicStructureDriverResult()

        # molecule
        coords = np.reshape(mel.c, (len(mel.ian), 3))
        geometry: list[tuple[str, list[float]]] = []
        for atom, xyz in zip(mel.ian, coords):
            geometry.append((PERIODIC_TABLE[atom], BOHR * xyz))

        driver_result.molecule = Molecule(
            geometry,
            multiplicity=mel.multip,
            charge=mel.icharg,
        )

        # driver metadata
        driver_result.add_property(DriverMetadata("GAUSSIAN", mel.gversion, ""))

        # basis transform
        moc = GaussianDriver._get_matrix(mel, "ALPHA MO COEFFICIENTS")
        moc_b = GaussianDriver._get_matrix(mel, "BETA MO COEFFICIENTS")
        if np.array_equal(moc, moc_b):
            logger.debug("ALPHA and BETA MO COEFFS identical, keeping only ALPHA")
            moc_b = None

        nmo = moc.shape[0]

        basis_transform = ElectronicBasisTransform(
            ElectronicBasis.AO, ElectronicBasis.MO, moc, moc_b
        )
        driver_result.add_property(basis_transform)

        # particle number
        num_alpha = (mel.ne + mel.multip - 1) // 2
        num_beta = (mel.ne - mel.multip + 1) // 2

        driver_result.add_property(
            ParticleNumber(num_spin_orbitals=nmo * 2, num_particles=(num_alpha, num_beta))
        )

        # electronic energy
        hcore = GaussianDriver._get_matrix(mel, "CORE HAMILTONIAN ALPHA")
        logger.debug("CORE HAMILTONIAN ALPHA %s", hcore.shape)
        hcore_b = GaussianDriver._get_matrix(mel, "CORE HAMILTONIAN BETA")
        if np.array_equal(hcore, hcore_b):
            # From Gaussian interfacing documentation: "The two core Hamiltonians are identical
            # unless a Fermi contact perturbation has been applied."
            logger.debug("CORE HAMILTONIAN ALPHA and BETA identical, keeping only ALPHA")
            hcore_b = None
        logger.debug(
            "CORE HAMILTONIAN BETA %s",
            "- Not present" if hcore_b is None else hcore_b.shape,
        )
        one_body_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (hcore, hcore_b))
        one_body_mo = one_body_ao.transform_basis(basis_transform)

        eri = GaussianDriver._get_matrix(mel, "REGULAR 2E INTEGRALS")
        logger.debug("REGULAR 2E INTEGRALS %s", eri.shape)
        if moc_b is None and mel.matlist.get("BB MO 2E INTEGRALS") is not None:
            # It seems that when using ROHF, where alpha and beta coeffs are
            # the same, that integrals
            # for BB and BA are included in the output, as well as just AA
            # that would have been expected
            # Using these fails to give the right answer (is ok for UHF).
            # So in this case we revert to
            # using 2 electron ints in atomic basis from the output and
            # converting them ourselves.
            useao2e = True
            logger.info(
                "Identical A and B coeffs but BB ints are present - using regular 2E ints instead"
            )
        two_body_ao = TwoBodyElectronicIntegrals(ElectronicBasis.AO, (eri, None, None, None))
        two_body_mo: TwoBodyElectronicIntegrals
        if useao2e:
            # eri are 2-body in AO. We can convert to MO via the ElectronicBasisTransform but using
            # ints in MO already, as in the else here, is better
            two_body_mo = two_body_ao.transform_basis(basis_transform)
        else:
            # These are in MO basis but by default will be reduced in size by frozen core default so
            # to use them we need to add Window=Full above when we augment the config
            mohijkl = GaussianDriver._get_matrix(mel, "AA MO 2E INTEGRALS")
            logger.debug("AA MO 2E INTEGRALS %s", mohijkl.shape)
            mohijkl_bb = GaussianDriver._get_matrix(mel, "BB MO 2E INTEGRALS")
            logger.debug(
                "BB MO 2E INTEGRALS %s",
                "- Not present" if mohijkl_bb is None else mohijkl_bb.shape,
            )
            mohijkl_ba = GaussianDriver._get_matrix(mel, "BA MO 2E INTEGRALS")
            logger.debug(
                "BA MO 2E INTEGRALS %s",
                "- Not present" if mohijkl_ba is None else mohijkl_ba.shape,
            )
            two_body_mo = TwoBodyElectronicIntegrals(
                ElectronicBasis.MO, (mohijkl, mohijkl_ba, mohijkl_bb, None)
            )

        electronic_energy = ElectronicEnergy(
            [one_body_ao, two_body_ao, one_body_mo, two_body_mo],
            nuclear_repulsion_energy=mel.scalar("ENUCREP"),
            reference_energy=mel.scalar("ETOTAL"),
        )

        kinetic = GaussianDriver._get_matrix(mel, "KINETIC ENERGY")
        logger.debug("KINETIC ENERGY %s", kinetic.shape)
        electronic_energy.kinetic = OneBodyElectronicIntegrals(ElectronicBasis.AO, (kinetic, None))

        overlap = GaussianDriver._get_matrix(mel, "OVERLAP")
        logger.debug("OVERLAP %s", overlap.shape)
        electronic_energy.overlap = OneBodyElectronicIntegrals(ElectronicBasis.AO, (overlap, None))

        orbs_energy = GaussianDriver._get_matrix(mel, "ALPHA ORBITAL ENERGIES")
        logger.debug("ORBITAL ENERGIES %s", overlap.shape)
        orbs_energy_b = GaussianDriver._get_matrix(mel, "BETA ORBITAL ENERGIES")
        logger.debug("BETA ORBITAL ENERGIES %s", overlap.shape)
        orbital_energies = (orbs_energy, orbs_energy_b) if moc_b is not None else orbs_energy
        electronic_energy.orbital_energies = np.asarray(orbital_energies)

        driver_result.add_property(electronic_energy)

        # dipole moment
        dipints = GaussianDriver._get_matrix(mel, "DIPOLE INTEGRALS")
        dipints = np.einsum("ijk->kji", dipints)

        x_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[0], None))
        y_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[1], None))
        z_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[2], None))

        x_dipole = DipoleMoment("x", [x_dip_ints, x_dip_ints.transform_basis(basis_transform)])
        y_dipole = DipoleMoment("y", [y_dip_ints, y_dip_ints.transform_basis(basis_transform)])
        z_dipole = DipoleMoment("z", [z_dip_ints, z_dip_ints.transform_basis(basis_transform)])

        nucl_dip = np.einsum("i,ix->x", mel.ian, coords)
        nucl_dip = np.round(nucl_dip, decimals=8)

        driver_result.add_property(
            ElectronicDipoleMoment(
                [x_dipole, y_dipole, z_dipole],
                nuclear_dipole_moment=nucl_dip,
                reverse_dipole_sign=True,
            )
        )

        # extra properties
        # TODO: once https://github.com/Qiskit/qiskit-nature/issues/312 is fixed we can stop adding
        # these properties by default.
        # if not settings.dict_aux_operators:
        driver_result.add_property(AngularMomentum(nmo * 2))
        driver_result.add_property(Magnetization(nmo * 2))

        return driver_result