コード例 #1
0
 def test_maximize_to_minimize(self):
     """Test maximization to minimization conversion"""
     op_max = QuadraticProgram()
     op_min = QuadraticProgram()
     for i in range(2):
         op_max.binary_var(name="x{}".format(i))
         op_min.binary_var(name="x{}".format(i))
     op_max.integer_var(name="x{}".format(2), lowerbound=-3, upperbound=3)
     op_min.integer_var(name="x{}".format(2), lowerbound=-3, upperbound=3)
     op_max.maximize(constant=3,
                     linear={"x0": 1},
                     quadratic={("x1", "x2"): 2})
     op_min.minimize(constant=3,
                     linear={"x0": 1},
                     quadratic={("x1", "x2"): 2})
     # check conversion of maximization problem
     conv = MaximizeToMinimize()
     op_conv = conv.convert(op_max)
     self.assertEqual(op_conv.objective.sense,
                      op_conv.objective.Sense.MINIMIZE)
     x = [0, 1, 2]
     fval_min = op_conv.objective.evaluate(conv.interpret(x))
     self.assertAlmostEqual(fval_min, -7)
     self.assertAlmostEqual(op_max.objective.evaluate(x), -fval_min)
     # check conversion of minimization problem
     op_conv = conv.convert(op_min)
     self.assertEqual(op_conv.objective.sense, op_min.objective.sense)
     fval_min = op_conv.objective.evaluate(conv.interpret(x))
     self.assertAlmostEqual(op_min.objective.evaluate(x), fval_min)
コード例 #2
0
    def test_minimization_problem(self):
        """Tests the optimizer with a minimization problem"""
        optimizer = GoemansWilliamsonOptimizer(num_cuts=10, seed=0)

        problem = Maxcut(self.graph).to_quadratic_program()

        # artificially convert to minimization
        max2min = MaximizeToMinimize()
        problem = max2min.convert(problem)

        results = optimizer.solve(problem)

        np.testing.assert_almost_equal([0, 1, 1, 0], results.x, 3)
        np.testing.assert_almost_equal(4, results.fval, 3)