def rl_loop_eval(): """Run the reinforcement learning loop This tries to create a realistic way to run the reinforcement learning with all default parameters. """ (_, new_model) = get_latest_model() qmeas.start_time('puzzle') new_model_path = os.path.join(MODELS_DIR, new_model) sgf_files = [ './benchmark_sgf/9x9_pro_YKSH.sgf', './benchmark_sgf/9x9_pro_IYMD.sgf', './benchmark_sgf/9x9_pro_YSIY.sgf', './benchmark_sgf/9x9_pro_IYHN.sgf', ] result, total_pct = predict_games.report_for_puzzles_parallel( new_model_path, sgf_files, 2, tries_per_move=1) #result, total_pct = predict_games.report_for_puzzles(new_model_path, sgf_files, 2, tries_per_move=1) print('accuracy = ', total_pct) print('result = ', result) mlperf_log.minigo_print(key=mlperf_log.EVAL_ACCURACY, value={ "epoch": iteration, "value": total_pct }) mlperf_log.minigo_print(key=mlperf_log.EVAL_TARGET, value=goparams.TERMINATION_ACCURACY) qmeas.record('puzzle_total', total_pct) qmeas.record('puzzle_result', repr(result)) qmeas.record('puzzle_summary', { 'results': repr(result), 'total_pct': total_pct, 'model': new_model }) qmeas._flush() with open(os.path.join(BASE_DIR, new_model + '-puzzles.txt'), 'w') as f: f.write(repr(result)) f.write('\n' + str(total_pct) + '\n') qmeas.stop_time('puzzle') if total_pct >= goparams.TERMINATION_ACCURACY: print('Reaching termination accuracy; ', goparams.TERMINATION_ACCURACY) mlperf_log.minigo_print(key=mlperf_log.RUN_STOP, value={"success": True}) with open('TERMINATE_FLAG', 'w') as f: f.write(repr(result)) f.write('\n' + str(total_pct) + '\n') qmeas.end()
def rl_loop_pk(): """Run the reinforcement learning loop This tries to create a realistic way to run the reinforcement learning with all default parameters. """ _, new_model = get_latest_model() model_num, model_name = get_second_latest_model() if not evaluate(model_name, new_model, verbose=0): print('Flag bury new model') with open('PK_FLAG', 'w') as f: f.write("pk\n") qmeas.end()
print('cleaning up {}'.format(SELFPLAY_BACKUP_DIR)) os.system('rm {}/*'.format(SELFPLAY_BACKUP_DIR)) qmeas.stop_time('selfplay_wait') if __name__ == '__main__': #tf.logging.set_verbosity(tf.logging.INFO) qmeas.start(os.path.join(BASE_DIR, 'stats')) # make sure seed is small enough SEED = int(sys.argv[1]) % 65536 # make sure ITERATION is small enough because we use nanosecond as ITERATION ITERATION = int(sys.argv[2]) % 65536 # get TF logger log = logging.getLogger('tensorflow') log.setLevel(logging.DEBUG) # create formatter and add it to the handlers formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') # create file handler which logs even debug messages fh = logging.FileHandler('tensorflow.log') fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) log.addHandler(fh) if len(sys.argv) > 3: main_() qmeas.end()
bury_latest_model() if __name__ == '__main__': #tf.logging.set_verbosity(tf.logging.INFO) seed = int(sys.argv[1]) iteration = int(sys.argv[2]) print('Setting random seed, iteration = ', seed, iteration) seed = hash(seed) + iteration print("training seed: ", seed) random.seed(seed) tf.set_random_seed(seed) numpy.random.seed(seed) qmeas.start(os.path.join(BASE_DIR, 'stats')) # get TF logger log = logging.getLogger('tensorflow') log.setLevel(logging.DEBUG) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # create file handler which logs even debug messages fh = logging.FileHandler('tensorflow.log') fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) log.addHandler(fh) rl_loop() qmeas.end()
def rl_loop_bury(): bury_latest_model() qmeas.end()