コード例 #1
0
def test_compare_qtcurrent_to_tucker_theory():
    """This test will compare the quasiparticle tunneling currents that are
    calculated by qmix.qtcurrent to results calculated from Tucker theory 
    (Tucker & Feldman, 1985). Tucker theory uses much simpler equations to 
    calculate the tunneling currents, so it is easier to be sure that the 
    Tucker functions are working properly. The functions that are used 
    calculate the currents from Tucker theory are found at the bottom of this 
    file.

    Note: The Tucker theory functions that are included within this file only 
    work for a single tone/single harmonic simulation."""

    # Build embedding circuit
    cct = EmbeddingCircuit(1, 1, vb_min=0, vb_npts=101)
    freq = 0.33
    cct.freq[1] = freq

    # Set voltage across junction to Vph * 0.8
    alpha = 0.8
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct.freq[1] * alpha

    # Calculate QTC using QMix
    idc_qmix = qtcurrent(vj, cct, RESP, 0.)  # DC
    iac_qmix = qtcurrent(vj, cct, RESP, cct.freq[1])  # AC

    # Calculate QTC using Tucker theory
    idc_tucker = _tucker_dc_current(VBIAS, RESP, alpha, freq)  # DC
    iac_tucker = _tucker_ac_current(VBIAS, RESP, alpha, freq)  # AC

    # Compare methods
    np.testing.assert_almost_equal(idc_qmix, idc_tucker, decimal=15)
    np.testing.assert_almost_equal(iac_qmix, iac_tucker, decimal=15)
コード例 #2
0
def test_setting_up_simulation_using_different_harmonic():
    """Simulate the QTCs using a one tone/one harmonic simulation. Then 
    simulate the same setup using a higher-order harmonic.

    For example, simulate a signal at 200 GHz. Then simulate the 
    second-harmonic from a 100 GHz fundamental tone. Both simulations should
    provide the same result."""

    num_b = 15   # number of Bessel functions to include
    num_f = 1    # number of frequencies

    freq = 0.3    # frequency, normalized
    alpha = 0.8  # drive level

    # Basic simulation for comparison ----------------------------------------

    num_p = 1
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = freq
    vj = cct.initialize_vj()
    vj[1, 1, :] = freq * alpha

    i1 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
    i1_dc = i1[0].real
    i1_ac = i1[-1]

    # Using a fundamental tone that is half the original frequency -----------

    num_p = 2
    cct = EmbeddingCircuit(num_f, num_p)
    cct.freq[1] = freq / 2.
    vj = cct.initialize_vj()
    vj[1, 2, :] = freq * alpha
    freq_list = [0, freq/2., freq]

    i2 = qtcurrent(vj, cct, RESP, freq_list, num_b*2)
    i2_dc = i2[0].real
    i2_ac = i2[-1]

    # Compare methods
    # dc
    np.testing.assert_almost_equal(i1_dc, i2_dc, decimal=15)
    # ac at fundamental
    np.testing.assert_almost_equal(i1_ac, i2_ac, decimal=15)
    # lower order harmonics should all be zero
    np.testing.assert_equal(i2[1], np.zeros_like(i2[1]))
コード例 #3
0
def test_effect_of_adding_more_tones_on_if():
    """Calculate the IF signal that is generated by a simple 2 tone 
    simulation. Then, add the IF frequency to the simulation. This should not
    have any effect on the IF results."""

    alpha1 = 0.8
    freq1 = 0.3
    freq2 = 0.35
    freq_list = [0, freq1, freq2]  

    num_b = (9, 5, 5, 5)

    # 2 tones ----------------------------------------------------------------

    num_f = 2
    num_p = 1
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = freq1
    cct.freq[2] = freq2
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct.freq[1] * alpha1
    vj[2, 1, :] = 1e-5

    idc2, ilo2, iif2 = qtcurrent(vj, cct, RESP, freq_list, num_b)

    # 3 tones ----------------------------------------------------------------

    num_f = 3
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = freq1
    cct.freq[2] = freq2
    cct.freq[3] = abs(freq1 - freq2)
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct.freq[1] * alpha1
    vj[2, 1, :] = 1e-5

    idc3, ilo3, iif3 = qtcurrent(vj, cct, RESP, freq_list, num_b)

    # Compare results --------------------------------------------------------

    # Compare methods
    np.testing.assert_almost_equal(idc2, idc3, decimal=15)
    np.testing.assert_almost_equal(iif2.real, iif3.real, decimal=15)
    np.testing.assert_almost_equal(iif2.imag, iif3.imag, decimal=15)
コード例 #4
0
    def two_tone():

        qtcurrent(vj, cct, resp, 0., num_b=num_b, verbose=False)
コード例 #5
0
    def one_tone():

        current = qtcurrent(vj, cct, resp, 0., num_b=num_b, verbose=False)
コード例 #6
0
    cct = qmix.circuit.EmbeddingCircuit(1, 1)
    cct.freq[1] = 0.3

    vj = cct.initialize_vj()
    vj[1, 1, :] = 0.3

    def one_tone():

        current = qtcurrent(vj, cct, resp, 0., num_b=num_b, verbose=False)

    t_1tone = min(timeit.Timer(one_tone).repeat(3000, 1))
    print("1 tone:\t\t{:7.2f} ms".format(t_1tone * 1000))

    # Compare to previously calculated values
    current_test = qtcurrent(vj, cct, resp, 0., num_b=num_b, verbose=False)
    if args.overwrite:
        print(" -> Saving current")
        with open('data/qtcurrent1.data', 'wb') as f:
            pickle.dump(current_test, f)
    else:
        print(" -> Checking current")
        with open('data/qtcurrent1.data', 'rb') as f:
            current_known = pickle.load(f)
        numpy.testing.assert_almost_equal(current_test,
                                          current_known,
                                          decimal=15)

# 2 tone ---------------------------------------------------------------------

if args.tone is None or args.tone == 2:
コード例 #7
0
def test_effect_of_adding_more_tones():
    """This function simulates the QTCs using a 1 tone/1 harmonic simulation. 
    Then, more and more tones are added except only the first tone is
    ever excited. This should result in the same tunnelling currents being
    calculated in each simulation.

    Note: 1, 2, 3 and 4 tone simulations use different calculation techniques,
    so this test should make sure that they are all equivalent."""

    num_b = (9, 2, 2, 2)

    alpha1 = 0.8  # drive level, tone 1
    freq1 = 0.33  # frequency, tone 1

    # Setup 1st tone for comparison ------------------------------------------

    num_f = 1
    num_p = 1
    cct1 = EmbeddingCircuit(num_f, num_p)

    cct1.freq[1] = freq1
    vj = cct1.initialize_vj()
    vj[1, 1, :] = cct1.freq[1] * alpha1

    i1 = qtcurrent(vj, cct1, RESP, cct1.freq, num_b)
    idc1 = np.real(i1[0, :])
    iac1 = i1[1, :]

    # 2 tones ----------------------------------------------------------------

    num_f = 2
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = cct1.freq[1]
    cct.freq[2] = cct1.freq[1] + 0.05
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct1.freq[1] * alpha1

    i2 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
    idc2 = np.real(i2[0, :])
    iac2 = i2[1, :]

    # 3 tones ----------------------------------------------------------------

    num_f = 3
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = cct1.freq[1]
    cct.freq[2] = cct1.freq[1] + 0.05
    cct.freq[3] = cct1.freq[1] + 0.10
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct1.freq[1] * alpha1

    i3 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
    idc3 = np.real(i3[0, :])
    iac3 = i3[1, :]

    # 4 tones ----------------------------------------------------------------

    num_f = 4
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = cct1.freq[1]
    cct.freq[2] = cct1.freq[1] + 0.05
    cct.freq[3] = cct1.freq[1] + 0.10
    cct.freq[4] = cct1.freq[1] + 0.15

    vj = cct.initialize_vj()
    vj[1, 1, :] = cct.freq[1] * alpha1

    i4 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
    idc4 = np.real(i4[0, :])
    iac4 = i4[1, :]

    # Compare results --------------------------------------------------------

    # Compare methods
    # dc
    np.testing.assert_equal(idc1, idc2)
    np.testing.assert_equal(idc1, idc3)
    np.testing.assert_equal(idc1, idc4)
    # ac
    np.testing.assert_equal(iac1, iac2)
    np.testing.assert_equal(iac1, iac3)
    np.testing.assert_equal(iac1, iac4)
    # ensure all other tones are zero
    np.testing.assert_equal(i2[2, :], np.zeros_like(i2[2, :]))
    np.testing.assert_equal(i3[2, :], np.zeros_like(i3[2, :]))
    np.testing.assert_equal(i3[3, :], np.zeros_like(i3[3, :]))
    np.testing.assert_equal(i4[2, :], np.zeros_like(i4[2, :]))
    np.testing.assert_equal(i4[3, :], np.zeros_like(i4[3, :]))
    np.testing.assert_equal(i4[4, :], np.zeros_like(i4[4, :]))
コード例 #8
0
def test_excite_different_tones():
    """Calculate the QTCs using a 4 tone simulation. Do this 4 times, each 
    time exciting a different tone. Each simulation should be the same."""

    # input signal properties
    vj_set = 0.25        

    # 1st tone excited
    num_f = 4
    num_p = 1
    num_b = (9, 3, 3, 3)
    cct = EmbeddingCircuit(num_f, num_p)
    cct.freq[1] = 0.3
    cct.freq[2] = 0.4
    cct.freq[3] = 0.5
    cct.freq[4] = 0.6
    vj = cct.initialize_vj()
    vj[1, 1, :] = vj_set
    idc1 = qtcurrent(vj, cct, RESP, 0, num_b)

    # 2nd tone excited
    num_f = 4
    num_p = 1
    num_b = (3, 9, 3, 3)
    cct = EmbeddingCircuit(num_f, num_p)
    cct.freq[1] = 0.4
    cct.freq[2] = 0.3
    cct.freq[3] = 0.5
    cct.freq[4] = 0.6
    vj = cct.initialize_vj()
    vj[2, 1, :] = vj_set
    idc2 = qtcurrent(vj, cct, RESP, 0, num_b)

    # 3rd tone excited
    num_f = 4
    num_p = 1
    num_b = (3, 3, 9, 3)
    cct = EmbeddingCircuit(num_f, num_p)
    cct.freq[1] = 0.5
    cct.freq[2] = 0.4
    cct.freq[3] = 0.3
    cct.freq[4] = 0.6
    vj = cct.initialize_vj()
    vj[3, 1, :] = vj_set
    idc3 = qtcurrent(vj, cct, RESP, 0, num_b)

    # 4th tone excited
    num_f = 4
    num_p = 1
    num_b = (3, 3, 3, 9)
    cct = EmbeddingCircuit(num_f, num_p)
    cct.freq[1] = 0.6
    cct.freq[2] = 0.4
    cct.freq[3] = 0.5
    cct.freq[4] = 0.3
    vj = cct.initialize_vj()
    vj[4, 1, :] = vj_set
    idc4 = qtcurrent(vj, cct, RESP, 0, num_b)

    # Compare methods
    np.testing.assert_almost_equal(idc1, idc2, decimal=15)
    np.testing.assert_almost_equal(idc1, idc3, decimal=15)
    np.testing.assert_almost_equal(idc1, idc4, decimal=15)
コード例 #9
0
def test_effect_of_adding_more_harmonics():
    """This test calculates the QTCs using a 1 tone/1 harmonic simulation. 
    Then, more and more harmonics are added except only the first 
    harmonic is ever excited. This should result in the same tunnelling
    currents being calculated in each simulation."""

    num_b = 9

    alpha1 = 0.8  # drive level, harmonic 1
    freq1 = 0.33   # frequency, harmonic 1

    # Setup 1st tone for comparison ------------------------------------------

    num_f = 1
    num_p = 1
    cct1 = EmbeddingCircuit(num_f, num_p)

    cct1.freq[1] = freq1
    vj = cct1.initialize_vj()
    vj[1, 1, :] = cct1.freq[1] * alpha1

    freq_list = [0, freq1]
    i1 = qtcurrent(vj, cct1, RESP, freq_list, num_b)
    idc1 = i1[0, :].real

    # 2 harmonics ------------------------------------------------------------

    num_p = 2
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = cct1.freq[1]
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct1.freq[1] * alpha1

    freq_list = [0, freq1, freq1*2]
    i2 = qtcurrent(vj, cct, RESP, freq_list, num_b)
    idc2 = i2[0, :].real

    # 3 harmonics ------------------------------------------------------------

    num_p = 3
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = cct1.freq[1]
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct1.freq[1] * alpha1

    freq_list = [0, freq1, freq1*2, freq1*3]
    i3 = qtcurrent(vj, cct, RESP, freq_list, num_b)
    idc3 = i3[0, :].real

    # 4 harmonics ------------------------------------------------------------

    num_p = 4
    cct = EmbeddingCircuit(num_f, num_p)

    cct.freq[1] = cct1.freq[1]
    vj = cct.initialize_vj()
    vj[1, 1, :] = cct1.freq[1] * alpha1

    freq_list = [0, freq1, freq1*2, freq1*3, freq1*4]
    i4 = qtcurrent(vj, cct, RESP, freq_list, num_b)
    idc4 = i4[0, :].real

    # Compare results --------------------------------------------------------

    # Compare methods
    # dc
    np.testing.assert_equal(idc1, idc2)
    np.testing.assert_equal(idc1, idc3)
    np.testing.assert_equal(idc1, idc4)
    # ac at fundamental
    np.testing.assert_equal(i1[1, :], i2[1, :])
    np.testing.assert_equal(i1[1, :], i3[1, :])
    np.testing.assert_equal(i1[1, :], i4[1, :])
    # ac at 2nd harmonic
    np.testing.assert_equal(i2[2, :], i3[2, :])
    np.testing.assert_equal(i2[2, :], i4[2, :])
    # ac at 3rd harmonic
    np.testing.assert_equal(i3[3, :], i4[3, :])