コード例 #1
0
 def __init__(self):
     self.ps = U.Params(params).init_comps()
     self.pre = None
     self.post = None
     i = tf.constant([0.] * (4 * 10), shape=(4, 10))
     self.src_b = tf.Variable(initial_value=i)
     i = tf.constant([0.] * (4 * 10), shape=(4, 10))
     self.mem_b = tf.Variable(initial_value=i)
コード例 #2
0
def test_with_owner():
    a = L.Attn(Owner())
    a.build([(4, 10, 16), (), (4, 18, 16), ()])
    src = tf.constant([0.] * (4 * 10 * 16), shape=(4, 10, 16))
    bias = tf.constant([0.] * (4 * 10), shape=(4, 10))
    bias = tf.expand_dims(tf.expand_dims(bias, axis=1), axis=3)
    mem = tf.constant([0.] * (4 * 15 * 16), shape=(4, 15, 16))
    ctx = tf.constant([0.] * (4 * 15 * 16), shape=(4, 15, 16))
    a.call([src, bias, mem, ctx])
コード例 #3
0
def test_owner_none():
    a = L.Attn(Owner())
    a.build([(4, 10, 16)])
    src = tf.constant([0.] * (4 * 10 * 16), shape=(4, 10, 16))
    a.call([src])
    bias = tf.constant([0.] * (4 * 10), shape=(4, 10))
    bias = tf.expand_dims(tf.expand_dims(bias, axis=1), axis=3)
    a.call([src, bias])
    ctx = tf.constant([0.] * (4 * 15 * 16), shape=(4, 15, 16))
    a.call([src, bias, None, ctx])
コード例 #4
0
ファイル: embed_test.py プロジェクト: quantapix/qnarre2
def test_tokembed():
    e = TokEmbed(ps)
    e.build((1, 5))
    src = tf.constant([1, 2, 0, 3, 0], shape=(1, 5))
    e.call(src)
    ps.emb_one_hot = True
    e = TokEmbed(ps)
    e.build((1, 5))
    e.call(src)
コード例 #5
0
 def top_logp(self, ctx, bias, i):
     cfg = self.cfg
     y = tf.zeros((
         cfg.batch_size,
         cfg.beam_size,
         cfg.num_toks,
     ))
     y += tf.expand_dims(self.logp, axis=2)
     b = tf.range(cfg.batch_size)
     ii = tf.constant([i] * cfg.batch_size)
     for j in range(cfg.beam_size):
         jj = tf.constant([j] * cfg.batch_size)
         sel = tf.stack([b, jj, ii])
         yj = self.to_logp(self.tgt[:, j, :], ctx, bias, i)[1]
         y = tf.tensor_scatter_nd_add(y, sel, yj)
     y = tf.reshape(y, (-1, cfg.beam_size * cfg.num_toks))
     logp, idx = tf.top_k(y, k=2 * cfg.beam_size)
     return logp, idx
コード例 #6
0
 def build(self, input_shape):
     cfg = self.cfg
     tgt = input_shape[0]
     assert tgt[0] == cfg.batch_size
     y = tf.constant([[0.] + [-float('inf')] * (cfg.beam_size - 1)])
     self._logp = tf.tile(y, [cfg.batch_size, 1])
     sh = (cfg.batch_size, cfg.beam_size)
     self._score = tf.ones(shape=sh) * utils.big_neg
     self._flag = tf.zeros(dtype='bool', shape=sh)
     return super().build(input_shape)
コード例 #7
0
ファイル: embed_test.py プロジェクト: quantapix/qnarre2
def test_w_grad():
    e = TokEmbed(ps)
    e.build((None, 3))
    ins = tf.constant([[0, 1, 0]], dtype='int32')
    with tf.GradientTape() as tape:
        out = e(ins)
    print('===', out, e.weights)
    gs = tape.gradient(out, e.weights)
    opt = adagrad.AdagradOptimizer(0.1)
    opt.apply_gradients(zip(gs, e.weights))
    print('###', len(gs), 1)
コード例 #8
0
ファイル: utils.py プロジェクト: quantapix/qnarre2
 def __call__(self, step):
     lr = tf.constant(1.0)
     for name in [n.strip() for n in self.schedule.split('*')]:
         if name == 'constant':
             lr *= self.constant
         elif name == 'linear_warmup':
             lr *= tf.minimum(1.0, step / self.warmup_steps)
         else:
             assert name == 'rsqrt_decay'
             lr *= tf.rsqrt(tf.maximum(step, self.warmup_steps))
     tf.scalar('learning_rate', lr)
     return lr
コード例 #9
0
 def append_tok(self, idx, i, **kw):
     cfg = self.cfg
     k = 2 * cfg.beam_size
     b = tf.range(cfg.batch_size * k) // k
     b = tf.reshape(b, (cfg.batch_size, k))
     beam = idx // cfg.num_toks
     sel = tf.stack([b, beam], axis=2)
     y = tf.gather_nd(self.tgt, sel)
     ii = tf.constant([i] * cfg.batch_size * k)
     ii = tf.reshape(ii, (cfg.batch_size, k))
     sel = tf.stack([b, beam, ii], axis=2)
     u = tf.expand_dims(idx % cfg.num_toks, axis=2)
     tgt = tf.tensor_scatter_nd_update(y, sel, u)
     return tgt
コード例 #10
0
ファイル: records.py プロジェクト: quantapix/qnarre2
 def unpack():
     for v in vs:
         yield v.numpy() if isinstance(v, type(tf.constant(0))) else v
コード例 #11
0
def test_shift():
    a = L.Attn(Owner())
    x = tf.constant([1, 2, 3, 4, 5, 6], shape=(1, 1, 2, 3))
    tf.print(x)
    x = a.shift(x)
    tf.print(x)