コード例 #1
0
ファイル: DQN.py プロジェクト: Morgan-Griffiths/RL_gym
class DQN(object):
    def __init__(self,state_space,action_space,seed,update_every,batch_size,buffer_size,learning_rate):
        self.action_space = action_space
        self.state_space = state_space
        self.seed = random.seed(seed)
        self.batch_size = batch_size
        self.buffer_size = buffer_size
        self.learning_rate = learning_rate
        self.update_every = update_every
        
        self.qnetwork_local = QNetwork(state_space,action_space)
        self.qnetwork_target = QNetwork(state_space,action_space)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),lr=learning_rate)
        # Initialize replaybuffer
        self.memory = ReplayBuffer(action_space,buffer_size,buffer_size,seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        
    def step(self,state,action,reward,next_state,done,GAMMA):
        # Save the experience
        self.memory.add_experience(state,action,reward,next_state,done)
        
        # learn from the experience
        self.t_step = (self.t_step + 1) % self.update_every
        if self.t_step == 0:
            if len(self.memory) > self.buffer_size:
                experiences = self.memory.sample()
                self.learn(experiences,GAMMA)
        
    def act(self,state,eps=0.):
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()
        
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.sample(np.arange(self.action_space))
        
    def learn(self,experiences,GAMMA):
        
        states,actions,rewards,next_states,dones = experiences
        
        target_values = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
        targets = reward + (GAMMA * target_values * (1-done))
        action_values = self.qnetwork_local(states).gather(1,actions)
        loss = F.mse_loss(action_values,targets)
        loss.backward()
        self.optimizer.step()
        soft_update(TAU)
        
    def soft_update(self,tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        """
        for local_param,target_param in zip(self.qnetwork_local.parameters(),self.qnetwork_target.parameters()):
            local_param.data.copy_(tau*local_param.data + (1-tau)*target_param.data)
#         self.qnetwork_local.parameters() = TAU*self.qnetwork_local.parameters() + (1-TAU)*self.qnetwork_target.parameters()
コード例 #2
0
class Agent:
    def __init__(
            self,
            env: 'Environment',
            input_frame: ('int: the number of channels of input image'),
            input_dim: (
                'int: the width and height of pre-processed input image'),
            num_frames: ('int: Total number of frames'),
            eps_decay: ('float: Epsilon Decay_rate'),
            gamma: ('float: Discount Factor'),
            target_update_freq: ('int: Target Update Frequency (by frames)'),
            update_type: (
                'str: Update type for target network. Hard or Soft') = 'hard',
            soft_update_tau: ('float: Soft update ratio') = None,
            batch_size: ('int: Update batch size') = 32,
            buffer_size: ('int: Replay buffer size') = 1000000,
            update_start_buffer_size: (
                'int: Update starting buffer size') = 50000,
            learning_rate: ('float: Learning rate') = 0.0004,
            eps_min: ('float: Epsilon Min') = 0.1,
            eps_max: ('float: Epsilon Max') = 1.0,
            device_num: ('int: GPU device number') = 0,
            rand_seed: ('int: Random seed') = None,
            plot_option: ('str: Plotting option') = False,
            model_path: ('str: Model saving path') = './'):

        self.action_dim = env.action_space.n
        self.device = torch.device(
            f'cuda:{device_num}' if torch.cuda.is_available() else 'cpu')
        self.model_path = model_path

        self.env = env
        self.input_frames = input_frame
        self.input_dim = input_dim
        self.num_frames = num_frames
        self.epsilon = eps_max
        self.eps_decay = eps_decay
        self.eps_min = eps_min
        self.gamma = gamma
        self.target_update_freq = target_update_freq
        self.update_cnt = 0
        self.update_type = update_type
        self.tau = soft_update_tau
        self.batch_size = batch_size
        self.buffer_size = buffer_size
        self.update_start = update_start_buffer_size
        self.seed = rand_seed
        self.plot_option = plot_option

        self.q_current = QNetwork(
            (self.input_frames, self.input_dim, self.input_dim),
            self.action_dim).to(self.device)
        self.q_target = QNetwork(
            (self.input_frames, self.input_dim, self.input_dim),
            self.action_dim).to(self.device)
        self.q_target.load_state_dict(self.q_current.state_dict())
        self.q_target.eval()
        self.optimizer = optim.Adam(self.q_current.parameters(),
                                    lr=learning_rate)

        self.memory = ReplayBuffer(
            self.buffer_size,
            (self.input_frames, self.input_dim, self.input_dim),
            self.batch_size)

    def select_action(
        self, state:
        'Must be pre-processed in the same way while updating current Q network. See def _compute_loss'
    ):

        if np.random.random() < self.epsilon:
            return np.zeros(self.action_dim), self.env.action_space.sample()
        else:
            # if normalization is applied to the image such as devision by 255, MUST be expressed 'state/255' below.
            state = torch.FloatTensor(state).to(self.device).unsqueeze(0) / 255
            Qs = self.q_current(state)
            action = Qs.argmax()
            return Qs.detach().cpu().numpy(), action.detach().item()

    def processing_resize_and_gray(self, frame):
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)  # Pure
        # frame = cv2.cvtColor(frame[:177, 32:128, :], cv2.COLOR_RGB2GRAY) # Boxing
        # frame = cv2.cvtColor(frame[2:198, 7:-7, :], cv2.COLOR_RGB2GRAY) # Breakout
        frame = cv2.resize(frame,
                           dsize=(self.input_dim, self.input_dim)).reshape(
                               self.input_dim, self.input_dim).astype(np.uint8)
        return frame

    def get_state(self, action, skipped_frame=0):
        '''
        num_frames: how many frames to be merged
        input_size: hight and width of input resized image
        skipped_frame: how many frames to be skipped
        '''
        next_state = np.zeros(
            (self.input_frames, self.input_dim, self.input_dim))
        rewards = 0
        dones = 0
        for i in range(self.input_frames):
            for j in range(skipped_frame):
                state, reward, done, _ = self.env.step(action)
                rewards += reward
                dones += int(done)
            state, reward, done, _ = self.env.step(action)
            next_state[i] = self.processing_resize_and_gray(state)
            rewards += reward
            dones += int(done)
        return rewards, next_state, dones

    def get_init_state(self):
        state = self.env.reset()
        action = self.env.action_space.sample()
        _, state, _ = self.get_state(action, skipped_frame=0)
        return state

    def store(self, state, action, reward, next_state, done):
        self.memory.store(state, action, reward, next_state, done)

    def update_current_q_net(self):
        batch = self.memory.batch_load()
        loss = self._compute_loss(batch)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return loss.item()

    def target_soft_update(self):
        for target_param, current_param in zip(self.q_target.parameters(),
                                               self.q_current.parameters()):
            target_param.data.copy_(self.tau * current_param.data +
                                    (1.0 - self.tau) * target_param.data)

    def target_hard_update(self):
        self.update_cnt = (self.update_cnt + 1) % self.target_update_freq
        if self.update_cnt == 0:
            self.q_target.load_state_dict(self.q_current.state_dict())

    def train(self):
        tic = time.time()
        losses = []
        scores = []
        epsilons = []
        avg_scores = [[-1000]]

        score = 0

        print("Storing initial buffer..")
        state = self.get_init_state()
        for frame_idx in range(1, self.update_start + 1):
            _, action = self.select_action(state)
            reward, next_state, done = self.get_state(action, skipped_frame=0)
            self.store(state, action, reward, next_state, done)
            state = next_state
            if done: state = self.get_init_state()

        print("Done. Start learning..")
        history_store = []
        for frame_idx in range(1, self.num_frames + 1):
            Qs, action = self.select_action(state)
            reward, next_state, done = self.get_state(action, skipped_frame=0)
            self.store(state, action, reward, next_state, done)
            history_store.append([state, Qs, action, reward, next_state, done])
            loss = self.update_current_q_net()

            if self.update_type == 'hard': self.target_hard_update()
            elif self.update_type == 'soft': self.target_soft_update()

            score += reward
            losses.append(loss)

            if done:
                scores.append(score)
                if np.mean(scores[-10:]) > max(avg_scores):
                    torch.save(
                        self.q_current.state_dict(),
                        self.model_path + '{}_Score:{}.pt'.format(
                            frame_idx, np.mean(scores[-10:])))
                    training_time = round((time.time() - tic) / 3600, 1)
                    np.save(
                        self.model_path +
                        '{}_history_Score_{}_{}hrs.npy'.format(
                            frame_idx, score, training_time),
                        np.array(history_store))
                    print(
                        "          | Model saved. Recent scores: {}, Training time: {}hrs"
                        .format(scores[-10:], training_time),
                        ' /'.join(os.getcwd().split('/')[-3:]))
                avg_scores.append(np.mean(scores[-10:]))

                if self.plot_option == 'inline':
                    scores.append(score)
                    epsilons.append(self.epsilon)
                    self._plot(frame_idx, scores, losses, epsilons)
                elif self.plot_option == 'wandb':
                    wandb.log({
                        'Score': score,
                        'loss(10 frames avg)': np.mean(losses[-10:]),
                        'Epsilon': self.epsilon
                    })
                    print(score, end='\r')
                else:
                    print(score, end='\r')

                score = 0
                state = self.get_init_state()
                history_store = []
            else:
                state = next_state

            self._epsilon_step()

        print("Total training time: {}(hrs)".format(
            (time.time() - tic) / 3600))

    def _epsilon_step(self):
        ''' Epsilon decay control '''
        eps_decay_init = 1 / 1200000
        eps_decay = [
            eps_decay_init, eps_decay_init / 2.5, eps_decay_init / 3.5,
            eps_decay_init / 5.5
        ]

        if self.epsilon > 0.35:
            self.epsilon = max(self.epsilon - eps_decay[0], 0.1)
        elif self.epsilon > 0.27:
            self.epsilon = max(self.epsilon - eps_decay[1], 0.1)
        elif self.epsilon > 1.7:
            self.epsilon = max(self.epsilon - eps_decay[2], 0.1)
        else:
            self.epsilon = max(self.epsilon - eps_decay[3], 0.1)

    def _compute_loss(self, batch: "Dictionary (S, A, R', S', Dones)"):
        # If normalization is used, it must be applied to 'state' and 'next_state' here. ex) state/255
        states = torch.FloatTensor(batch['states']).to(self.device) / 255
        next_states = torch.FloatTensor(batch['next_states']).to(
            self.device) / 255
        actions = torch.LongTensor(batch['actions'].reshape(-1,
                                                            1)).to(self.device)
        rewards = torch.FloatTensor(batch['rewards'].reshape(-1, 1)).to(
            self.device)
        dones = torch.FloatTensor(batch['dones'].reshape(-1,
                                                         1)).to(self.device)

        current_q = self.q_current(states).gather(1, actions)
        # The next line is the only difference from Vanila DQN.
        next_q = self.q_target(next_states).gather(
            1,
            self.q_current(next_states).argmax(axis=1, keepdim=True)).detach()
        mask = 1 - dones
        target = (rewards + (mask * self.gamma * next_q)).to(self.device)

        loss = F.smooth_l1_loss(current_q, target)
        return loss

    def _plot(self, frame_idx, scores, losses, epsilons):
        clear_output(True)
        plt.figure(figsize=(20, 5), facecolor='w')
        plt.subplot(131)
        plt.title('frame %s. score: %s' % (frame_idx, np.mean(scores[-10:])))
        plt.plot(scores)
        plt.subplot(132)
        plt.title('loss')
        plt.plot(losses)
        plt.subplot(133)
        plt.title('epsilons')
        plt.plot(epsilons)
        plt.show()
コード例 #3
0
ファイル: qlearning.py プロジェクト: viveshok/ift6135
def train(game,
          num_steps=60000000,
          lr=0.00025,
          gamma=0.99,
          C=20000,
          batch_size=32):

    env = wrappers.wrap(gym.make(GAMES[game]))
    num_actions = env.action_space.n

    Q1 = QNetwork(num_actions)
    Q2 = QNetwork(num_actions)
    Q2.load_state_dict(Q1.state_dict())

    if torch.cuda.is_available():
        Q1.cuda()
        Q2.cuda()

    epsilon = Epsilon(1, 0.05, 1000000)
    optimizer = torch.optim.Adam(Q1.parameters(), lr=lr)
    optimizer.zero_grad()

    state1 = env.reset()

    t, last_t, loss, episode, score = 0, 0, 0, 0, 0
    last_ts, scores = datetime.now(), collections.deque(maxlen=100)

    while t < num_steps:

        qvalues = Q1(state1)
        if random() < epsilon(t):
            action = env.action_space.sample()
        else:
            action = qvalues.data.max(dim=1)[1][0]

        q = qvalues[0][action]

        state2, reward, done, _info = env.step(action)
        score += reward

        if not done:
            y = gamma * Q2(state2).detach().max(dim=1)[0][0] + reward
            state1 = state2
        else:
            reward = FloatTensor([reward])
            y = torch.autograd.Variable(reward, requires_grad=False)
            state1 = env.reset()
            scores.append(score)
            score = 0
            episode += 1

        loss += torch.nn.functional.smooth_l1_loss(q, y)

        t += 1

        if done or t % batch_size == 0:
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()
            loss = 0

        if t % C == 0:
            Q2.load_state_dict(Q1.state_dict())
            torch.save(Q1.state_dict(), 'qlearning_{}.pt'.format(game))

        if t % 1000 == 0:
            ts = datetime.now()
            datestr = ts.strftime('%Y-%m-%dT%H:%M:%S.%f')
            avg = mean(scores) if scores else float('nan')
            steps_per_sec = (t - last_t) / (ts - last_ts).total_seconds()
            l = '{} step {} episode {} avg last 100 scores: {:.2f} ε: {:.2f}, steps/s: {:.0f}'
            print(l.format(datestr, t, episode, avg, epsilon(t),
                           steps_per_sec))
            last_t, last_ts = t, ts
コード例 #4
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.0, training_mode=True):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        if training_mode is True:
            self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            action = np.argmax(action_values.cpu().data.numpy())
        else:
            action = random.choice(np.arange(self.action_size))

        action = np.int32(action)
        return action

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
コード例 #5
0
class DQN_Agent():
    """ Interacts an learns from the environment. """
    def __init__(self,
                 state_size,
                 action_size,
                 seed,
                 GAMMA=GAMMA,
                 TAU=TAU,
                 LR=LR,
                 UPDATE_EVERY=UPDATE_EVERY,
                 BUFFER_SIZE=BUFFER_SIZE,
                 BATCH_SIZE=BATCH_SIZE):
        """ Initialize the agent.
        ==========
        PARAMETERS 
        ==========
            state_size (int) = observation dimension of the environment
            action_size (int) = dimension of each action
            seed (int) = random seed
        """

        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        self.gamma = GAMMA
        self.tau = TAU
        self.lr = LR
        self.update_every = UPDATE_EVERY
        self.buffer_size = BUFFER_SIZE
        self.batch_size = BATCH_SIZE

        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

        # instantiate online local and target network for weight updates
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(self.device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(self.device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),
                                    lr=self.lr)
        # create a replay buffer
        self.memory = ReplayBuffer(action_size, self.buffer_size,
                                   self.batch_size, seed, self.device)
        # time steps for updating target network every time t_step % 4 == 0
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        ''' Append a SARS sequence to memory, then every update_every steps learn from experiences'''
        self.memory.add(state, action, reward, next_state, done)
        self.t_step = (self.t_step + 1) % self.update_every
        if self.t_step == 0:
            # in case enough samples are available in internal memory, sample and learn
            if len(self.memory) > self.batch_size:
                experiences = self.memory.sample()
                self.learn(experiences, self.gamma)

    def act(self, state, eps=0.):
        """ Choose action from an epsilon-greedy policy
        ==========
        PARAMETERS
        ==========
            state (array) = current state space
            eps (float) = epsilon, for epsilon-greedy action choice """
        state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local.forward(state)
        self.qnetwork_local.train()

        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """ Update the value parameters using experience tuples sampled from ReplayBuffer
        ==========
        PARAMETERS
        ==========
          experiences = Tuple of torch.Variable: SARS', done
          gamma (float) = discount factor to weight rewards
        """

        states, actions, rewards, next_states, dones = experiences

        # calculate max predicted Q values for the next states using target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # calculate expected Q vaues from the local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        # compute MSE Loss
        loss = F.mse_loss(Q_expected, Q_targets)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)

    def soft_update(self, local_model, target_model, tau):
        """ Soft update for model parameters, every update steps as defined above
        theta_target = tau * theta_local + (1-tau)*theta_target 

        ==========
        PARAMETERS 
        ==========
          local_model, target_model = PyTorch Models, weights will be copied from-to
          tau = interpolation parameter, type=float 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(self.tau * local_param.data +
                                    (1.0 - self.tau) * target_param.data)
コード例 #6
0
def train(env_name, seed=42, timesteps=1, epsilon_decay_last_step=1000,
            er_capacity=1e4, batch_size=16, lr=1e-3, gamma=1.0,  update_target=16,
            exp_name='test', init_timesteps=100, save_every_steps=1e4, arch='nature',
            dueling=False, play_steps=2, n_jobs=2):
    """
        Main training function. Calls the subprocesses to get experience and
        train the network.
    """
    # Multiprocessing method
    mp.set_start_method('spawn')

    # Get PyTorch device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # Set random seed for PyTorch
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    # Create logger
    logger = Logger(exp_name, loggers=['tensorboard'])

    # Create the Q network
    _env = make_env(env_name, seed)
    net = QNetwork(_env.observation_space, _env.action_space, arch=arch, dueling=dueling).to(device)
    # Create the target network as a copy of the Q network
    target_net = copy.deepcopy(net)
    # Create buffer and optimizer
    buffer = ExperienceReplay(capacity=int(er_capacity))
    optimizer = optim.Adam(net.parameters(), lr=lr)
    scheduler = StepLR(optimizer, step_size=LR_STEPS, gamma=0.99)

    # Multiprocessing queue
    obs_queue = mp.Queue(maxsize=n_jobs)
    transition_queue = mp.Queue(maxsize=n_jobs)
    workers, action_queues = [], []
    for i in range(n_jobs):
        action_queue = mp.Queue(maxsize=1)
        _seed = seed + i * 1000
        play_proc = mp.Process(target=play_func, args=(i, env_name, obs_queue, transition_queue, action_queue, _seed))
        play_proc.start()
        workers.append(play_proc)
        action_queues.append(action_queue)

    # Vars to keep track of performances and time
    timestep = 0
    current_reward, current_len = np.zeros(play_steps), np.zeros(play_steps, dtype=np.int64)
    current_time = [time.time() for _ in range(play_steps)]
    # Training loop
    while timestep < timesteps:
        # Compute the current epsilon
        epsilon = EPSILON_STOP + max(0, (EPSILON_START - EPSILON_STOP)*(epsilon_decay_last_step-timestep)/epsilon_decay_last_step)
        logger.log_kv('internals/epsilon', epsilon, timestep)
        # Gather observation N_STEPS
        ids, obs_batch = zip(*[obs_queue.get() for _ in range(play_steps)])
        # Pre-process observation_batch for PyTorch
        obs_batch = torch.from_numpy(np.array(obs_batch)).to(device)
        # Select greedy action from policy, apply epsilon-greedy selection
        greedy_actions = net(obs_batch).argmax(dim=1).cpu().detach().numpy()
        probs = torch.rand(greedy_actions.shape)
        actions = np.where(probs < epsilon, _env.action_space.sample(), greedy_actions)
        # Send actions
        for id, action in zip(ids, actions):
            action_queues[id].put(action)
        # Add transitions to experience replay
        transitions = [transition_queue.get() for _ in range(play_steps)]
        buffer.pushTransitions(transitions)
        # Check if we need to update rewards, time and lengths
        _, _, _, reward, done, _ = zip(*transitions)
        current_reward += reward
        current_len += 1
        for i, done in enumerate(done):
            if done:
                # Log quantities
                logger.log_kv('performance/return', current_reward[i], timestep)
                logger.log_kv('performance/length', current_len[i], timestep)
                logger.log_kv('performance/speed', current_len[i] / (time.time() - current_time[i]), timestep)
                # Reset counters
                current_reward[i] = 0.0
                current_len[i] = 0
                current_time[i] = time.time()

        # Update number of steps
        timestep += play_steps

        # Check if we are in the warm-up phase, otherwise go on with policy update
        if timestep < init_timesteps:
            continue
        # Learning rate upddate and log
        scheduler.step()
        logger.log_kv('internals/lr', scheduler.get_lr()[0], timestep)
        # Clear grads
        optimizer.zero_grad()
        # Get a batch from experience replay
        batch = buffer.sampleTransitions(batch_size)
        def batch_preprocess(batch_item):
            return torch.tensor(batch_item, dtype=(torch.long if isinstance(batch_item[0], np.int64) else None)).to(device)
        ids, states_batch, actions_batch, rewards_batch, done_batch, next_states_batch = map(batch_preprocess, zip(*batch))
        # Compute the loss function
        state_action_values = net(states_batch).gather(1, actions_batch.unsqueeze(-1)).squeeze(-1)
        next_state_values = target_net(next_states_batch).max(1)[0]
        next_state_values[done_batch] = 0.0
        expected_state_action_values = next_state_values.detach() * gamma + rewards_batch
        loss = F.mse_loss(state_action_values, expected_state_action_values)
        logger.log_kv('internals/loss', loss.item(), timestep)
        loss.backward()
        # Clip the gradients to avoid to abrupt changes (this is equivalent to Huber Loss)
        for param in net.parameters():
            param.grad.data.clamp_(-1, 1)
        optimizer.step()

        if timestep % update_target == 0:
            target_net.load_state_dict(net.state_dict())

        # Check if we need to save a checkpoint
        if timestep % save_every_steps == 0:
            torch.save(net.get_extended_state(), exp_name + '.pth')

    # Ending
    for i, worker in enumerate(workers):
        action_queues[i].put(None)
        worker.join()
コード例 #7
0
def train(env_name,
          arch,
          timesteps=1,
          init_timesteps=0,
          seed=42,
          er_capacity=1,
          epsilon_start=1.0,
          epsilon_stop=0.05,
          epsilon_decay_stop=1,
          batch_size=16,
          target_sync=16,
          lr=1e-3,
          gamma=1.0,
          dueling=False,
          play_steps=1,
          lr_steps=1e4,
          lr_gamma=0.99,
          save_steps=5e4,
          logger=None,
          experiment_name='test'):
    """
        Main training function. Calls the subprocesses to get experience and
        train the network.
    """

    # Casting params which are expressable in scientific notation
    def int_scientific(x):
        return int(float(x))

    timesteps, init_timesteps = map(int_scientific,
                                    [timesteps, init_timesteps])
    lr_steps, epsilon_decay_stop = map(int_scientific,
                                       [lr_steps, epsilon_decay_stop])
    er_capacity, target_sync, save_steps = map(
        int_scientific, [er_capacity, target_sync, save_steps])
    lr = float(lr)

    # Multiprocessing method
    mp.set_start_method('spawn')

    # Get PyTorch device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Create the Q network
    _env = make_env(env_name, seed)
    net = QNetwork(_env.observation_space,
                   _env.action_space,
                   arch=arch,
                   dueling=dueling).to(device)
    # Create the target network as a copy of the Q network
    tgt_net = ptan.agent.TargetNet(net)
    # Create buffer and optimizer
    buffer = ptan.experience.ExperienceReplayBuffer(experience_source=None,
                                                    buffer_size=er_capacity)
    optimizer = optim.Adam(net.parameters(), lr=lr)
    scheduler = StepLR(optimizer, step_size=lr_steps, gamma=0.99)

    # Multiprocessing queue
    epsilon_schedule = (epsilon_start, epsilon_stop, epsilon_decay_stop)
    exp_queue = mp.Queue(maxsize=play_steps * 2)
    play_proc = mp.Process(target=play_func,
                           args=(env_name, net, exp_queue, seed, timesteps,
                                 epsilon_schedule, gamma))
    play_proc.start()

    # Main training loop
    timestep = 0
    while play_proc.is_alive() and timestep < timesteps:
        timestep += play_steps
        # Query the environments and log results if the episode has ended
        for _ in range(play_steps):
            exp, info = exp_queue.get()
            if exp is None:
                play_proc.join()
                break
            buffer._add(exp)
            logger.log_kv('internals/epsilon', info['epsilon'][0],
                          info['epsilon'][1])
            if 'ep_reward' in info.keys():
                logger.log_kv('performance/return', info['ep_reward'],
                              timestep)
                logger.log_kv('performance/length', info['ep_length'],
                              timestep)
                logger.log_kv('performance/speed', info['speed'], timestep)

        # Check if we are in the starting phase
        if len(buffer) < init_timesteps:
            continue

        scheduler.step()
        logger.log_kv('internals/lr', scheduler.get_lr()[0], timestep)
        # Get a batch from experience replay
        optimizer.zero_grad()
        batch = buffer.sample(batch_size * play_steps)
        # Unpack the batch
        states, actions, rewards, dones, next_states = unpack_batch(batch)
        states_v = torch.tensor(states).to(device)
        next_states_v = torch.tensor(next_states).to(device)
        actions_v = torch.tensor(actions).to(device)
        rewards_v = torch.tensor(rewards).to(device)
        done_mask = torch.ByteTensor(dones).to(device)
        # Optimize defining the loss function
        state_action_values = net(states_v).gather(
            1, actions_v.unsqueeze(-1)).squeeze(-1)
        next_state_values = tgt_net.target_model(next_states_v).max(1)[0]
        next_state_values[done_mask] = 0.0
        expected_state_action_values = next_state_values.detach(
        ) * gamma + rewards_v
        loss = F.mse_loss(state_action_values, expected_state_action_values)
        logger.log_kv('internals/loss', loss.item(), timestep)
        loss.backward()
        # Clip the gradients to avoid to abrupt changes (this is equivalent to Huber Loss)
        for param in net.parameters():
            param.grad.data.clamp_(-1, 1)
        optimizer.step()

        # Check if the target network need to be synched
        if timestep % target_sync == 0:
            tgt_net.sync()

        # Check if we need to save a checkpoint
        if timestep % save_steps == 0:
            torch.save(net.get_extended_state(), experiment_name + '.pth')