コード例 #1
0
    def get_dq(self, q, e1, J1, e2, J2, e3, J3, e4, J4):
        de1 = self.lambda1 * e1
        de2 = self.lambda2 * e2
        de3 = self.lambda3 * e3
        de4 = self.lambda4 * e4

        W = self.w1 * np.dot(J1.T, J1) + self.w2 * np.dot(
            J2.T, J2) + self.w3 * np.dot(J3.T, J3) + self.w4 * np.dot(
                J4.T, J4)
        p = -2 * (self.w1 * np.dot(J1.T, de1) + self.w2 * np.dot(J2.T, de2) +
                  self.w3 * np.dot(J3.T, de3) + self.w4 * np.dot(J4.T, de4))

        lower_limits = np.maximum((self.qmin - q[7:]) / self.dt, self.dqmin)
        upper_limits = np.minimum((self.qmax - q[7:]) / self.dt, self.dqmax)

        lower_limits = np.hstack((self.lfb, lower_limits))
        upper_limits = np.hstack((self.ufb, upper_limits))

        # Solver
        solver = QProblemB(19)
        options = Options()
        options.setToMPC()
        options.printLevel = PrintLevel.LOW
        solver.setOptions(options)

        nWSR = np.array([10])
        solver.init(W, p, lower_limits, upper_limits, nWSR)
        dq = np.zeros(19)
        solver.getPrimalSolution(dq)
        return dq
コード例 #2
0
def solveLeastSquare(A,
                     b,
                     lb=None,
                     ub=None,
                     A_in=None,
                     lb_in=None,
                     ub_in=None):
    '''
    Solve the least square problem:
    minimize   || A*x-b ||^2
    subject to lb_in <= A_in*x <= ub_in
               lb <= x <= ub
    '''

    n = A.shape[1]
    m_in = 0
    if A_in is not None:
        m_in = A_in.shape[0]
        if lb_in is None:
            lb_in = np.array(m_in * [-1e99])
        if ub_in is None:
            ub_in = np.array(m_in * [1e99])

    if lb is None:
        lb = np.array(n * [-1e99])
    if ub is None:
        ub = np.array(n * [1e99])

    Hess = np.dot(A.transpose(), A)
    grad = -np.dot(A.transpose(), b)
    maxActiveSetIter = np.array([100 + 2 * m_in + 2 * n])
    maxComputationTime = np.array([600.0])
    options = Options()
    options.printLevel = PrintLevel.LOW
    # NONE, LOW, MEDIUM
    options.enableRegularisation = True
    print('Gonna solve QP...')
    if m_in == 0:
        qpOasesSolver = QProblemB(n)
        # , HessianType.SEMIDEF);
        qpOasesSolver.setOptions(options)
        imode = qpOasesSolver.init(Hess, grad, lb, ub, maxActiveSetIter,
                                   maxComputationTime)
    else:
        qpOasesSolver = SQProblem(n, m_in)
        # , HessianType.SEMIDEF);
        qpOasesSolver.setOptions(options)
        imode = qpOasesSolver.init(Hess, grad, A_in, lb, ub, lb_in, ub_in,
                                   maxActiveSetIter, maxComputationTime)
    print('QP solved in %f seconds and %d iterations' %
          (maxComputationTime[0], maxActiveSetIter[0]))
    if imode != 0 and imode != 63:
        print("ERROR Qp oases %d " % (imode))
    x_norm = np.zeros(n)
    # solution of the normalized problem
    qpOasesSolver.getPrimalSolution(x_norm)
    return x_norm
def solveLeastSquare(A,
                     b,
                     lb=None,
                     ub=None,
                     A_in=None,
                     lb_in=None,
                     ub_in=None):
    n = A.shape[1]
    m_in = 0
    if (A_in != None):
        m_in = A_in.shape[0]
        if (lb_in == None):
            lb_in = np.array(m_in * [-1e99])
        if (ub_in == None):
            ub_in = np.array(m_in * [1e99])

    if (lb == None):
        lb = np.array(n * [-1e99])
    if (ub == None):
        ub = np.array(n * [1e99])

    Hess = np.dot(A.transpose(), A)
    grad = -np.dot(A.transpose(), b)
    maxActiveSetIter = np.array([100 + 2 * m_in + 2 * n])
    maxComputationTime = np.array([600.0])
    options = Options()
    options.printLevel = PrintLevel.LOW
    #NONE, LOW, MEDIUM
    options.enableRegularisation = True
    print 'Gonna solve QP...'
    if (m_in == 0):
        qpOasesSolver = QProblemB(n)
        #, HessianType.SEMIDEF);
        qpOasesSolver.setOptions(options)
        imode = qpOasesSolver.init(Hess, grad, lb, ub, maxActiveSetIter,
                                   maxComputationTime)
    else:
        qpOasesSolver = SQProblem(n, m_in)
        #, HessianType.SEMIDEF);
        qpOasesSolver.setOptions(options)
        imode = qpOasesSolver.init(Hess, grad, A_in, lb, ub, lb_in, ub_in,
                                   maxActiveSetIter, maxComputationTime)
    print 'QP solved in %f seconds and %d iterations' % (maxComputationTime[0],
                                                         maxActiveSetIter[0])
    if (imode != 0 and imode != 63):
        print "ERROR Qp oases %d " % (imode)
    x_norm = np.zeros(n)
    # solution of the normalized problem
    qpOasesSolver.getPrimalSolution(x_norm)
    return x_norm
コード例 #4
0
def qpoases_solve_qp(P,
                     q,
                     G=None,
                     h=None,
                     A=None,
                     b=None,
                     initvals=None,
                     max_wsr=1000):
    """
    Solve a Quadratic Program defined as:

        minimize
            (1/2) * x.T * P * x + q.T * x

        subject to
            G * x <= h
            A * x == b

    using qpOASES <https://projects.coin-or.org/qpOASES>.

    Parameters
    ----------
    P : numpy.array
        Symmetric quadratic-cost matrix.
    q : numpy.array
        Quadratic-cost vector.
    G : numpy.array
        Linear inequality constraint matrix.
    h : numpy.array
        Linear inequality constraint vector.
    A : numpy.array, optional
        Linear equality constraint matrix.
    b : numpy.array, optional
        Linear equality constraint vector.
    initvals : numpy.array, optional
        Warm-start guess vector.
    max_wsr : integer, optional
        Maximum number of Working-Set Recalculations given to qpOASES.

    Returns
    -------
    x : numpy.array
        Solution to the QP, if found, otherwise ``None``.

    Note
    ----
    This function relies on some updates from the standard distribution of
    qpOASES (details below). A fully compatible repository is published at
    <https://github.com/stephane-caron/qpOASES>. (Quick install instructions:
    run ``make`` from the cloned repository, then go to interfaces/python and
    run ``sudo python setup.py install``.)

    Note
    ----
    This function allows empty bounds (lb, ub, lbA or ubA). This was
    provisioned by the C++ API but not by the Python API of qpOASES (as of
    version 3.2.0). Be sure to update the Cython file (qpoases.pyx) to convert
    ``None`` to the null pointer.
    """
    if initvals is not None:
        print("qpOASES: note that warm-start values ignored by wrapper")
    n = P.shape[0]
    lb, ub = None, None
    has_cons = G is not None or A is not None
    if G is not None and A is None:
        C = G
        lb_C = None  # NB:
        ub_C = h
    elif G is None and A is not None:
        C = A
        lb_C = b
        ub_C = b
    elif G is not None and A is not None:
        C = vstack([G, A, A])
        lb_C = hstack([-__infty * ones(h.shape[0]), b, b])
        ub_C = hstack([h, b, b])
    if has_cons:
        qp = QProblem(n, C.shape[0])
        qp.setOptions(options)
        return_value = qp.init(P, q, C, lb, ub, lb_C, ub_C, array([max_wsr]))
        if return_value == ReturnValue.MAX_NWSR_REACHED:
            print("qpOASES reached the maximum number of WSR (%d)" % max_wsr)
    else:
        qp = QProblemB(n)
        qp.setOptions(options)
        qp.init(P, q, lb, ub, max_wsr)
    x_opt = zeros(n)
    ret = qp.getPrimalSolution(x_opt)
    if ret != 0:  # 0 == SUCCESSFUL_RETURN code of qpOASES
        print("qpOASES failed with return code %d" % ret)
    return x_opt
コード例 #5
0
def solveLeastSquare(A,
                     b,
                     lb=None,
                     ub=None,
                     A_in=None,
                     lb_in=None,
                     ub_in=None,
                     maxIterations=None,
                     maxComputationTime=60.0,
                     regularization=1e-8):
    n = A.shape[1]
    m_in = 0
    A = np.asarray(A)
    b = np.asarray(b).squeeze()
    if (A_in is not None):
        m_in = A_in.shape[0]
        if (lb_in is None):
            lb_in = np.array(m_in * [-1e99])
        else:
            lb_in = np.asarray(lb_in).squeeze()
        if (ub_in is None):
            ub_in = np.array(m_in * [1e99])
        else:
            ub_in = np.asarray(ub_in).squeeze()
    if (lb is None):
        lb = np.array(n * [-1e99])
    else:
        lb = np.asarray(lb).squeeze()
    if (ub is None):
        ub = np.array(n * [1e99])
    else:
        ub = np.asarray(ub).squeeze()

    # 0.5||Ax-b||^2 = 0.5(x'A'Ax - 2b'Ax + b'b) = 0.5x'A'Ax - b'Ax +0.5b'b
    Hess = np.dot(A.T, A) + regularization * np.identity(n)
    grad = -np.dot(A.T, b)
    if (maxIterations is None):
        maxActiveSetIter = np.array([100 + 2 * m_in + 2 * n])
    else:
        maxActiveSetIter = np.array([maxIterations])
    maxComputationTime = np.array([maxComputationTime])
    options = Options()
    options.printLevel = PrintLevel.NONE
    #NONE, LOW, MEDIUM
    options.enableRegularisation = False
    if (m_in == 0):
        qpOasesSolver = QProblemB(n)
        #, HessianType.SEMIDEF);
        qpOasesSolver.setOptions(options)
        # beware that the Hessian matrix may be modified by this function
        imode = qpOasesSolver.init(Hess, grad, lb, ub, maxActiveSetIter,
                                   maxComputationTime)
    else:
        qpOasesSolver = SQProblem(n, m_in)
        #, HessianType.SEMIDEF);
        qpOasesSolver.setOptions(options)
        imode = qpOasesSolver.init(Hess, grad, A_in, lb, ub, lb_in, ub_in,
                                   maxActiveSetIter, maxComputationTime)
    x = np.empty(n)
    qpOasesSolver.getPrimalSolution(x)
    #print "QP cost:", 0.5*(np.linalg.norm(np.dot(A, x)-b)**2);
    return (imode, np.asmatrix(x).T)
コード例 #6
0
    def test_example1b(self):
        # Example for qpOASES main function using the QProblemB class.
        #Setup data of first QP.

        H   = np.array([1.0, 0.0, 0.0, 0.5 ]).reshape((2,2))
        g   = np.array([1.5, 1.0 ])
        lb  = np.array([0.5, -2.0])
        ub  = np.array([5.0, 2.0 ])

        # Setup data of second QP.

        g_new   = np.array([1.0, 1.5])
        lb_new  = np.array([0.0, -1.0])
        ub_new  = np.array([5.0, -0.5])

        # Setting up QProblemB object.
        qp = QProblemB(2)

        options = Options()
        options.enableFlippingBounds = BooleanType.FALSE
        options.initialStatusBounds  = SubjectToStatus.INACTIVE
        options.numRefinementSteps   = 1
        options.printLevel = PrintLevel.NONE
        qp.setOptions(options)

        # Solve first QP.
        nWSR = 10
        qp.init(H, g, lb, ub, nWSR)

        # Solve second QP.
        nWSR = 10;
        qp.hotstart(g_new, lb_new, ub_new, nWSR)

        # Get and print solution of second QP.
        xOpt_actual = np.zeros(2)
        qp.getPrimalSolution(xOpt_actual)
        xOpt_actual = np.asarray(xOpt_actual, dtype=float)
        objVal_actual = qp.getObjVal()
        objVal_actual = np.asarray(objVal_actual, dtype=float)

        cmd = os.path.join(bin_path, "example1b")
        p = Popen(cmd, shell=True, stdout=PIPE)
        stdout, stderr = p.communicate()
        stdout = str(stdout).replace('\\n', '\n')
        stdout = stdout.replace("'", '')
        print(stdout)

        # get c++ solution from std
        pattern = re.compile(r'xOpt\s*=\s*\[\s+(?P<xOpt>([0-9., e+-])*)\];')
        match = pattern.search(stdout)
        xOpt_expected = match.group('xOpt')
        xOpt_expected = xOpt_expected.split(",")
        xOpt_expected = np.asarray(xOpt_expected, dtype=float)

        pattern = re.compile(r'objVal = (?P<objVal>[0-9-+e.]*)')
        match = pattern.search(stdout)
        objVal_expected = match.group('objVal')
        objVal_expected = np.asarray(objVal_expected, dtype=float)

        print("xOpt_actual =", xOpt_actual)
        print("xOpt_expected =", xOpt_expected)
        print("objVal_actual = ", objVal_actual)
        print("objVal_expected = ", objVal_expected)

        assert_almost_equal(xOpt_actual, xOpt_expected, decimal=7)
        assert_almost_equal(objVal_actual, objVal_expected, decimal=7)
コード例 #7
0
#Setup data of first QP.

H = np.array([1.0, 0.0, 0.0, 0.5]).reshape((2, 2))
g = np.array([1.5, 1.0])
lb = np.array([0.5, -2.0])
ub = np.array([5.0, 2.0])

# Setup data of second QP.

g_new = np.array([1.0, 1.5])
lb_new = np.array([0.0, -1.0])
ub_new = np.array([5.0, -0.5])

# Setting up QProblemB object.
example = QProblemB(2)

options = Options()
options.enableFlippingBounds = BooleanType.FALSE
options.initialStatusBounds = SubjectToStatus.INACTIVE
options.numRefinementSteps = 1

example.setOptions(options)

# Solve first QP.
nWSR = 10
example.init(H, g, lb, ub, nWSR)
print("\nnWSR = %d\n\n" % nWSR)

# Solve second QP.
nWSR = 10