コード例 #1
0
    def parfunc(x,ntraj):
        kaoi = x[0]
        nCi = x[1]
        models.append(LSCmodel.LSCModel(nL,nCi))
        dt = models[-1].dt

        basedir = "./boxsize_5_5_5/run_bulk_nL{}_nC{}/trajectory_{}".format(nL,nCi,traj_number)
        dissocdatafile = basedir+"/accepted_dissociation_moves.txt"
        unbounddata_template = basedir+"/unbound_simulations_fine_output/unbound_reaction_event_density_nL_{}_*.npy".format(nL)

        # Load reaction probability data for each timepoint for each trajectory
        unbound_data_zipfile =  "./boxsize_5_5_5/run_bulk_nL{}_nC{}".format(nL,nCi)+"/unbound_output_combined.zip"

        coarse = 10
        tstart = pytime.time()
        #out = qan.process_quasireversible_simulations(kaoi,kdo,dt,dissocdatafile,unbound_data_files,coarse) 
        out = qan.process_quasireversible_simulations(kaoi,kdo,dt,dissocdatafile,unbound_data_zipfile,coarse,
                                                      zipped=True,target_surv_prob=target_surv_prob,nsteps=nsteps,ntraj=ntraj) 
        print("Processed run nC = {}, kao = {}, ntraj = {} in {:.2f} min".format(nCi,kaoi,ntraj,(pytime.time()-tstart)/60.))
            
        # Save output to .npz file for plotting
        out['nC'] = nCi
        out['kao'] = kaoi
        out['kdo'] = kdo
        if isinstance(ntraj,tuple):
            outfilename = "./analyzed_data/analysis_out_nC_{}_kao_{}_kdo_{}_targetprob_{}_nsteps_{}_ntraj_{}_{}.npz".format(
                                                        nCi,kaoi,kdo,target_surv_prob,nsteps,ntraj[1]-ntraj[0],ntraj[0])
        else:
            outfilename = "./analyzed_data/analysis_out_nC_{}_kao_{}_kdo_{}_targetprob_{}_nsteps_{}_ntraj_{}.npz".format(
                                                        nCi,kaoi,kdo,target_surv_prob,nsteps,ntraj)
        np.savez(outfilename,out)

        return 1
コード例 #2
0
    def parfunc(x):
        kaoi = x[0]
        nCi = x[1]
        models.append(LSCmodel.LSCModel(nL, nCi))
        dt = models[-1].dt

        basedir = "./rundir/run_bulk_nL{}_nC{}/trajectory_{}".format(
            nL, nCi, traj_number)
        dissocdatafile = basedir + "/accepted_dissociation_moves.txt"
        unbounddata_template = basedir + "/unbound_simulations_fine_output/unbound_reaction_event_density_nL_{}_*.npy".format(
            nL)

        # Load reaction probability data for each timepoint for each trajectory
        unbound_data_files = []
        for datai in glob.glob(unbounddata_template):
            unbound_data_files.append(datai)
        unbound_data_zipfile = basedir + "/unbound_output.zip"

        coarse = 10
        target_surv_prob = 1e-4  # where to extrapolate to with exponential function
        tstart = pytime.time()
        #out = qan.process_quasireversible_simulations(kaoi,kdo,dt,dissocdatafile,unbound_data_files,coarse)
        out = qan.process_quasireversible_simulations(
            kaoi,
            kdo,
            dt,
            dissocdatafile,
            unbound_data_zipfile,
            coarsening=coarse,
            zipped=True,
            target_surv_prob=target_surv_prob)
        print("Processed run nC = {}, kao = {} in {:.2f} min".format(
            nCi, kaoi, (pytime.time() - tstart) / 60.))

        return out
コード例 #3
0
 def parfunc(kaoi):
     return qan.process_quasireversible_simulations(kaoi,kdo,dt,dissoc_data_file,unbound_data_files)