コード例 #1
0
    def test_trotterize_noiseless(self):
        # Noiseless simulations
        # Compare that the integrator adiabatic results match the trotterized results
        # First, compare the non-IS subspace results
        simulation = adiabatic_simulation(sample_graph(), IS_subspace=False)
        res_trotterize = simulation.performance_vs_total_time(
            np.arange(1, 5, 1),
            metric='optimum_overlap',
            initial_state=State(equal_superposition(6)),
            schedule=lambda t, tf: simulation.linear_schedule(
                t, tf, coefficients=[10, 10]),
            plot=False,
            verbose=True,
            method='trotterize')
        res_RK45 = simulation.performance_vs_total_time(
            np.arange(1, 5, 1),
            metric='optimum_overlap',
            initial_state=State(equal_superposition(6)),
            schedule=lambda t, tf: simulation.linear_schedule(
                t, tf, coefficients=[10, 10]),
            plot=False,
            verbose=True,
            method='RK45')
        # Now test in the IS subspace
        self.assertTrue(
            np.allclose(res_trotterize[0]['trotterize']['optimum_overlap'],
                        res_RK45[0]['RK45']['optimum_overlap'],
                        atol=1e-2))

        simulation = adiabatic_simulation(sample_graph(), IS_subspace=True)
        res_trotterize = simulation.performance_vs_total_time(
            np.arange(1, 4, 1),
            metric='optimum_overlap',
            schedule=lambda t, tf: simulation.linear_schedule(
                t, tf, coefficients=[10, 10]),
            plot=False,
            verbose=True,
            method='trotterize')
        res_RK45 = simulation.performance_vs_total_time(
            np.arange(1, 4, 1),
            metric='optimum_overlap',
            schedule=lambda t, tf: simulation.linear_schedule(
                t, tf, coefficients=[10, 10]),
            plot=False,
            verbose=True,
            method='RK45')
        self.assertTrue(
            np.allclose(res_trotterize[0]['trotterize']['optimum_overlap'],
                        res_RK45[0]['RK45']['optimum_overlap'],
                        atol=1e-2))
コード例 #2
0
ファイル: test_hamiltonian.py プロジェクト: gharib85/qsim
    def test_hamiltonian_driver(self):
        N = 6

        hl_qubit = hamiltonian.HamiltonianDriver(graph=tools_test.sample_graph())

        psi0 = State(np.zeros((2 ** N, 1)))
        psi0[0, 0] = 1
        psi1 = State(tools.outer_product(psi0, psi0))

        # Evolve by e^{-i (\pi/2) \sum_i X_i}
        psi0 = hl_qubit.evolve(psi0, np.pi / 2)

        # Should get (-1j)^N |111111>
        self.assertTrue(np.vdot(psi0, psi0) == 1)
        self.assertTrue(psi0[-1, 0] == (-1j) ** N)

        # Evolve by e^{-i (\pi/2) \sum_i X_i}
        psi1 = hl_qubit.evolve(psi1, np.pi / 2)

        # Should get (-1j)^N |111111>
        self.assertTrue(tools.is_valid_state(psi1))
        self.assertAlmostEqual(psi1[-1, -1], 1)

        psi0 = State(np.zeros((2 ** N, 1)))
        psi0[0, 0] = 1
        psi0 = hl_qubit.left_multiply(psi0)
        psi1 = np.zeros((2 ** N, 1), dtype=np.complex128)
        for i in range(N):
            psi1[2 ** i, 0] = 1
        self.assertTrue(np.allclose(psi0, psi1))
        psi2 = State(np.zeros((2 ** N, 1)))
        psi2[0, 0] = 1
        psi2 = hl_qubit.hamiltonian @ psi2
        self.assertTrue(np.allclose(psi0, psi2))

        N = 3
        hl = hamiltonian.HamiltonianDriver(transition=(0, 1), code=rydberg)
        psi0 = State(np.zeros((rydberg.d ** N, 1)), code=rydberg)
        psi0[5, 0] = 1
        psi1 = State(tools.outer_product(psi0, psi0), code=rydberg)
        psi0 = hl.left_multiply(psi0)

        self.assertTrue(psi0[2, 0] == 1)
        self.assertTrue(psi0[14, 0] == 1)
        psi1 = hl.left_multiply(psi1)
        self.assertTrue(psi1[2, 5] == 1)
        self.assertTrue(psi1[14, 5] == 1)

        psi0 = State(np.zeros((rydberg.d ** N, 1)), code=rydberg)
        psi0[5, 0] = 1
        psi0 = hl.evolve(psi0, np.pi / 2)
        self.assertTrue(np.isclose(psi0[11, 0], -1))

        # IS subspace
        hl = hamiltonian.HamiltonianDriver(transition=(0, 2), code=rydberg, IS_subspace=True, graph=line_graph(2))
        psi0 = State(np.zeros((8, 1)), code=rydberg)
        psi0[-1,0] = 1
        psi0 = State(tools.outer_product(psi0, psi0), code=rydberg)
        self.assertTrue(tools.is_hermitian(hl.evolve(psi0, 1)))
コード例 #3
0
 def test_IS_subspace(self):
     g = tools_test.sample_graph()
     self.assertTrue(g.num_independent_sets == 13)
     self.assertTrue(g.mis_size == 2)
コード例 #4
0
import numpy as np
import unittest

from qsim.graph_algorithms.graph import line_graph
from qsim import tools
from qsim.evolution import hamiltonian
from qsim.codes import rydberg
from qsim.test import tools_test
from qsim.codes.quantum_state import State

# Generate sample graph
g = tools_test.sample_graph()


class TestHamiltonian(unittest.TestCase):
    def test_hamiltonian_C(self):
        pass

        # Then compute MaxCut energies
        hc = hamiltonian.HamiltonianMaxCut(g)
        self.assertTrue(hc.hamiltonian[0, 0] == 0)
        self.assertTrue(hc.hamiltonian[-1, -1] == 0)
        self.assertTrue(hc.hamiltonian[2, 2] == 3)

    def test_rydberg_hamiltonian(self):
        # Test normal MIS Hamiltonian
        # Graph has six nodes and nine edges
        hc = hamiltonian.HamiltonianMIS(g)
        self.assertTrue(hc.hamiltonian[0, 0] == -3)
        self.assertTrue(hc.hamiltonian[-1, -1] == 0)
        self.assertTrue(hc.hamiltonian[-2, -2] == 1)
コード例 #5
0
import numpy as np
import unittest

from qsim.test.tools_test import sample_graph
from qsim.tools.tools import equal_superposition, outer_product
from qsim.graph_algorithms.graph import Graph, ring_graph
from qsim.codes.quantum_state import State
import networkx as nx
from qsim.evolution import quantum_channels, hamiltonian
from qsim.graph_algorithms import qaoa
from qsim.codes import two_qubit_code, jordan_farhi_shor

# Generate sample graph
N = 6

g = sample_graph()
ring = ring_graph(N)

hc = hamiltonian.HamiltonianMaxCut(g)
hc_ring = hamiltonian.HamiltonianMaxCut(ring)
hb = hamiltonian.HamiltonianDriver()
hamiltonians = [hc, hb]
ring_hamiltonians = [hc_ring, hb]

sim = qaoa.SimulateQAOA(g, cost_hamiltonian=hc, hamiltonian=hamiltonians)
sim_ring = qaoa.SimulateQAOA(ring,
                             cost_hamiltonian=hc_ring,
                             hamiltonian=ring_hamiltonians)
sim_ket = qaoa.SimulateQAOA(g, cost_hamiltonian=hc, hamiltonian=hamiltonians)
sim_noisy = qaoa.SimulateQAOA(g,
                              cost_hamiltonian=hc,