コード例 #1
0
def plot():

    cs = palettable.colorbrewer.qualitative.Set1_3.mpl_colors

    # Load parameter file
    with open('/home/lc585/qsosed/input.yml', 'r') as f:
        parfile = yaml.load(f)

    ebvmin = -0.075
    ebvmax = 0.075

    zmin = 1
    zmax = 3.0

    # Load stuff
    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()

    # Load data
    df = get_data()

    df = df[(df.z_HW >= zmin) & (df.z_HW <= zmax)]

    colmin, colmax = [], []

    zs = np.arange(zmin, zmax + 0.025, 0.025)

    mycm = cm.get_cmap('Blues_r')
    mycm.set_under('w')
    cset = brewer2mpl.get_map('Blues', 'sequential', 9).mpl_colors
    mycm = truncate_colormap(mycm, 0.0, 0.8)

    fig = plt.figure(figsize=(figsize(1, vscale=0.8)))
    ax = fig.add_subplot(1, 1, 1)
    plt.tight_layout()

    #histogram definition
    xyrange = [[0., 3.0], [0, 3]]  # data range
    bins = [100, 60]  # number of bins
    thresh = 7  #density threshold

    #data definition

    xdat, ydat = df.z_HW, df.iVEGA - df.KVEGA

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax.imshow(np.flipud(hh.T),
                   cmap=mycm,
                   extent=np.array(xyrange).flatten(),
                   interpolation='none',
                   aspect='auto',
                   vmin=thresh,
                   vmax=45)

    clb = fig.colorbar(im)
    clb.set_label('Number of Objects')
    ax.scatter(xdat1, ydat1, color=cset[-1], s=2)

    plt.ylim(0, 3.5)

    col = []
    for z in zs:

        parfile['ext']['EBV'] = ebvmax

        magtmp, wavlentmp, fluxtmp = model(redshift=z, parfile=parfile)

        col.append(magtmp[3] - magtmp[8])

    plt.plot(zs, col, label='E(B-V) = 0.075', color=cs[0], linewidth=1.0)
    upper_bound_1 = col[np.argmin(np.abs(zs - 1.0)):np.argmin(np.abs(zs -
                                                                     1.5))]
    upper_bound_2 = col[np.argmin(np.abs(zs - 2.0)):np.argmin(np.abs(zs -
                                                                     2.7))]

    col = []
    for z in zs:

        parfile['ext']['EBV'] = ebvmin

        magtmp, wavlentmp, fluxtmp = model(redshift=z, parfile=parfile)

        col.append(magtmp[3] - magtmp[8])

    plt.plot(zs, col, label='E(B-V) = -0.075', color=cs[0], linewidth=1.0)
    lower_bound_1 = col[np.argmin(np.abs(zs - 1.0)):np.argmin(np.abs(zs -
                                                                     1.5))]
    lower_bound_2 = col[np.argmin(np.abs(zs - 2.0)):np.argmin(np.abs(zs -
                                                                     2.7))]

    plt.fill_between(zs[np.argmin(np.abs(zs - 2.0)):np.argmin(np.abs(zs -
                                                                     2.7))],
                     lower_bound_2,
                     upper_bound_2,
                     facecolor='None',
                     edgecolor=cs[0],
                     linewidth=3.0)

    col = []
    for z in zs:

        parfile['ext']['EBV'] = 0.0

        magtmp, wavlentmp, fluxtmp = model(redshift=z, parfile=parfile)

        col.append(magtmp[3] - magtmp[8])

    plt.plot(zs, col, label='E(B-V) = 0.0', color=cs[0], linewidth=1.0)

    plt.xlim(0.75, 3.5)

    plt.text(3.33821,
             2.5,
             'E(B-V)=',
             horizontalalignment='right',
             verticalalignment='center',
             color='black')

    plt.text(3.09608,
             2.2,
             '0.075',
             horizontalalignment='left',
             verticalalignment='center',
             color='black')

    plt.text(3.09608,
             1.2,
             '-0.075',
             horizontalalignment='left',
             verticalalignment='center',
             color='black')

    plt.text(3.09608,
             1.7,
             '0.0',
             horizontalalignment='left',
             verticalalignment='center',
             color='black')

    plt.xlabel(r'Redshift $z$')
    plt.ylabel(r'$i$-$K$')
    plt.tight_layout()

    fig.savefig('/home/lc585/thesis/figures/chapter05/ik_versus_z_low_ext.pdf')
    plt.show()

    return None
コード例 #2
0
ファイル: sed_color_plots.py プロジェクト: liamcoatman/thesis
def plot():

    set_plot_properties() # change style 

    cs = palettable.colorbrewer.qualitative.Set1_8.mpl_colors

    with open('/home/lc585/qsosed/input.yml', 'r') as f:
        parfile = yaml.load(f)

    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()
    lin = fittingobj.get_lin()
    galspc = fittingobj.get_galspc()
    ext = fittingobj.get_ext()
    galcnt = fittingobj.get_galcnt()
    ignmin = fittingobj.get_ignmin()
    ignmax = fittingobj.get_ignmax()
    ztran = fittingobj.get_ztran()
    lyatmp = fittingobj.get_lyatmp()
    lybtmp = fittingobj.get_lybtmp()
    lyctmp = fittingobj.get_lyctmp()
    whmin = fittingobj.get_whmin()
    whmax = fittingobj.get_whmax()
    qsomag = fittingobj.get_qsomag()
    flxcorr = fittingobj.get_flxcorr()
    cosmo = fittingobj.get_cosmo() 

    params = Parameters()
    params.add('plslp1', value = -0.478)
    params.add('plslp2', value = -0.199)
    params.add('plbrk', value = 2.40250)
    params.add('bbt', value = 1.30626)
    params.add('bbflxnrm', value = 2.673)
    params.add('elscal', value = 1.240)
    params.add('scahal',value = 0.713)
    params.add('galfra',value = 0.0)
    params.add('bcnrm',value = 0.135)
    params.add('ebv',value = 0.0)
    params.add('imod',value = 18.0)
    
    # Load median magnitudes 
    with open('/home/lc585/qsosed/sdss_ukidss_wise_medmag_ext.dat') as f:
        datz = np.loadtxt(f, usecols=(0,))

    datz = datz[:-5]

    # Load filters
    ftrlst = fittingobj.get_ftrlst()[2:-2] 
    lameff = fittingobj.get_lameff()[2:-2]
    bp = fittingobj.get_bp()[2:-2] # these are in ab and data is in vega 
    dlam = fittingobj.get_bp()[2:-2]
    zromag = fittingobj.get_zromag()[2:-2]

    with open('ftgd_dr7.dat') as f:
        ftgd = np.loadtxt(f, skiprows=1, usecols=(1,2,3,4,5,6,7,8,9))

    modarr = residual(params,
                      parfile,
                      wavlen,
                      datz,
                      lin,
                      bp,
                      dlam,
                      zromag,
                      galspc,
                      ext,
                      galcnt,
                      ignmin,
                      ignmax,
                      ztran,
                      lyatmp,
                      lybtmp,
                      lyctmp,
                      ftrlst,
                      whmin,
                      whmax,
                      cosmo,
                      flxcorr,
                      qsomag,
                      ftgd)
    
    fname = '/home/lc585/qsosed/sdss_ukidss_wise_medmag_ext.dat'
    datarr = np.genfromtxt(fname, usecols=(5,7,9,11,13,15,17,19,21)) 
    datarr[datarr < 0.0] = np.nan 

    datarr = datarr[:-5, :]




    # remove less than lyman break

    col1 = np.arange(8)
    col2 = col1 + 1 
    
    col_label = ['$r$ - $i$',
                 '$i$ - $z$',
                 '$z$ - $Y$',
                 '$Y$ - $J$',
                 '$J$ - $H$',
                 '$H$ - $K$',
                 '$K$ - $W1$',
                 '$W1$ - $W2$']

    df = get_data() 
    df = df[(df.z_HW > 1) & (df.z_HW < 3)]

    colstr1 = ['rVEGA',
               'iVEGA',
               'zVEGA',
               'YVEGA',
               'JVEGA',
               'HVEGA',
               'KVEGA',
               'W1VEGA']
    
    colstr2 = ['iVEGA',
               'zVEGA',
               'YVEGA',
               'JVEGA',
               'HVEGA',
               'KVEGA',
               'W1VEGA',
               'W2VEGA']

    ylims = [[0, 0.6], 
             [-0.1, 0.5], 
             [-0.1, 0.5],
             [-0.1, 0.5],
             [0.2, 0.9],
             [0.2, 0.9],
             [0.5, 1.6],
             [0.8, 1.5]]


    fig, axs = plt.subplots(4, 2, figsize=figsize(1, vscale=2), sharex=True) 
    
    for i, ax in enumerate(axs.flatten()):

        #data definition
        ydat = datarr[:, col1[i]] - datarr[:, col2[i]]

        ax.scatter(datz, 
                   ydat, 
                   color='black', 
                   s=5,
                   label='Data')

        ax.plot(datz,
                modarr[:,col1[i]] - modarr[:, col2[i]],
                color=cs[1], 
                label='Model')

        # ax.scatter(df.z_HW, df[colstr1[i]] - df[colstr2[i]], s=1, alpha=0.1) 


        ax.set_title(col_label[i], size=10)
    
        ax.set_ylim(ylims[i])
        ax.set_xlim(0.75, 3.25)

    

    axs[0, 0].legend(bbox_to_anchor=(0.7, 0.99), 
                     bbox_transform=plt.gcf().transFigure,
                     fancybox=True, 
                     shadow=True,
                     scatterpoints=1,
                     ncol=2) 



    axs[3, 0].set_xlabel(r'Redshift $z$')
    axs[3, 1].set_xlabel(r'Redshift $z$')

    fig.tight_layout()

    fig.subplots_adjust(wspace=0.2, hspace=0.15, top=0.93)

    fig.savefig('/home/lc585/thesis/figures/chapter05/sed_color_plot.pdf')


    plt.show() 

    return None
コード例 #3
0
def plot():
        
    plslp1 = 0.71
    plslp2 = 0.05
    plbrk = 2679.92
    bbt = 1158.99
    bbflxnrm = 0.25
    galfra = 0.89
    elscal = 0.72
    imod = 18.0 
    scahal = 1.0
    
    with open('input.yml', 'r') as f:
        parfile = yaml.load(f)
    
    # Load stuff
    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()
    
    flxcorr = np.array([1.0] * len(wavlen))

    ik0, ik1, ik2 = [], [], []

    zs = np.arange(2,4.01,0.01)
    
    for z in zs:

        print z 

        magtmp, wavlentmp1, fluxtmp1 = model(plslp1,
                                             plslp2,
                                             plbrk,
                                             bbt,
                                             bbflxnrm,
                                             elscal,
                                             scahal,
                                             galfra,
                                             0.0,
                                             imod,
                                             z,
                                             fittingobj,
                                             flxcorr,
                                             parfile)

        ik0.append( magtmp[3] - magtmp[8] )

        magtmp, wavlentmp1, fluxtmp1 = model(plslp1,
                                             plslp2,
                                             plbrk,
                                             bbt,
                                             bbflxnrm,
                                             elscal,
                                             scahal,
                                             galfra,
                                             0.1,
                                             imod,
                                             z,
                                             fittingobj,
                                             flxcorr,
                                             parfile)

        ik1.append( magtmp[3] - magtmp[8] )

        magtmp, wavlentmp1, fluxtmp1 = model(plslp1,
                                             plslp2,
                                             plbrk,
                                             bbt,
                                             bbflxnrm,
                                             elscal,
                                             scahal,
                                             galfra,
                                             0.2,
                                             imod,
                                             z,
                                             fittingobj,
                                             flxcorr,
                                             parfile)

        ik2.append( magtmp[3] - magtmp[8] )                           
 

    datmag, sigma, datz, name, snr = loaddatraw('DR10',
                                                '/data/lc585/SDSS/DR10QSO_AllWISE_matched.v2.fits',
                                                True,
                                                0,
                                                23.0,
                                                15.0,
                                                False,
                                                0.1)

    

    fig = plt.figure(figsize=figsize(0.7))
    ax = fig.add_subplot(111)
    ax.plot(zs,ik0,color='black',linewidth=2, zorder=1)
    ax.plot(zs,ik1,color='black',linewidth=2, zorder=1)
    ax.plot(zs,ik2,color='black',linewidth=2, zorder=1)

    ax.plot(datz,
            datmag[:,3] - datmag[:,8],
            marker='o',
            markersize=2,
            alpha=0.5,
            markeredgecolor='none',
            markerfacecolor='gray',
            linestyle='',
            zorder=0)
    
    textprops = dict(fontsize=10,ha='left',va='center', zorder=1, color='red')

    ax.text(3.5,0.646,'E(B-V) = 0.0', **textprops)
    ax.text(3.5,1.455,'E(B-V) = 0.1', **textprops)
    ax.text(3.5,2.285,'E(B-V) = 0.2', **textprops)

    ax.set_xlim(2,4)
    ax.set_ylim(-2,4)

    ax.set_xlabel(r'Redshift $z$')
    ax.set_ylabel(r'$i - K$')
    
    fig.tight_layout()

    fig.savefig('/home/lc585/thesis/figures/chapter06/ik_versus_z_high_ext.pdf')
    plt.show() 

    return None
コード例 #4
0
def plot():

    mycm = cm.get_cmap('YlOrRd_r')
    mycm.set_under('w')
    mycm = truncate_colormap(mycm, 0.0, 0.8)
    
    cset = brewer2mpl.get_map('YlOrRd', 'sequential', 9).mpl_colors
    
    tab = Table.read('/data/lc585/QSOSED/Results/141031/sample1.fits')
    
    fig = plt.figure(figsize=figsize(0.7, vscale=1.5))
    
    ax1 = fig.add_subplot(2,1,1)
    ax2 = fig.add_subplot(2,1,2)
    fig.subplots_adjust(wspace=0.0)
    fig.subplots_adjust(hspace=0.0)
    fig.subplots_adjust(top=0.99, bottom=0.2)

    #histogram definition
    xyrange = [[0.5,1.5],[-0.4,1.2]] # data range
    bins = [45,45] # number of bins
    thresh = 4  #density threshold
    
    #data definition
    w1mag = tab['W1MPRO_ALLWISE'] + 2.699
    w2mag = tab['W2MPRO_ALLWISE'] + 3.339
    z = tab['Z_HEWETT']
    xdat, ydat = z, w1mag - w2mag
    
    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)
    
    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh] # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
    
    im = ax1.imshow(np.flipud(hh.T),cmap=mycm,extent=np.array(xyrange).flatten(), interpolation='none',aspect='auto', vmin=thresh, vmax=45)
    ax1.scatter(xdat1, ydat1,color=cset[-1])
    
    ax1.set_ylabel(r'$W1-W2$',fontsize=14)
    
    for tick in ax1.xaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    for tick in ax1.yaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    ax1.set_ylim(-0.4,1.2)
    ax1.set_xlim(0.25,1.7)
    
    im = ax2.imshow(np.flipud(hh.T),cmap=mycm,extent=np.array(xyrange).flatten(), interpolation='none',aspect='auto', vmin=thresh, vmax=45)
    ax2.scatter(xdat1, ydat1,color=cset[-1])
    
    axcb = fig.add_axes([0.13,0.1,0.75,0.02])
    clb = fig.colorbar(im, cax=axcb,orientation='horizontal')
    clb.set_label('Number of Objects',fontsize=12)
    clb.ax.tick_params(labelsize=10)
    
    ax2.set_xlabel(r'Redshift $z$',fontsize=14)
    ax2.set_ylabel(r'$W1-W2$',fontsize=14)
    
    for tick in ax2.xaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    for tick in ax2.yaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    ax2.set_ylim(ax1.get_ylim())
    ax2.set_xlim(ax1.get_xlim())
    tabtmp = tab
    tabtmp.sort('Z')
    
    
    #plt.tick_params(axis='both',which='major',labelsize=12)
    
    ax1.get_xaxis().set_ticks([])
    ax1.set_yticklabels(['',0.0,0.2,0.4,0.6,0.8,1.0,1.2])
    ax2.set_yticklabels([-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0])
    #plt.scatter(z,w1mag-w2mag,c='grey',alpha=0.3)
    
    #xdat = z
    #ydat = w1mag - w2mag
    #zdat = tab['LOGLBOL']
    #
    #plt.hexbin(xdat,ydat,C=tab['LUM_UV'],gridsize=10,cmap=mycm)
    #cb = plt.colorbar()
    #cb.set_label('UV Luminosity')
    #plt.ylim(-0.2,1.2)
    #plt.xlim(0.4,1.6)
    ##plt.savefig('/data/lc585/QSOSED/Results/141030/figure1.jpg')
    #
    #xyrange = [[0.5,1.5],[0,1.2]] # data range
    #bins = [10,6] # number of bins
    #thresh = 20
    #hh, locx, locy = histogram2d(xdat,
    #                             ydat,
    #                             range=xyrange,
    #                             bins=bins)
    #
    #
    #print locy
    #
    #posx = np.digitize(xdat, locx)
    #posy = np.digitize(ydat, locy)
    #
    #grid = []
    #for i in range(10):
    #    row = []
    #    for j in range(6):
    #        row.append(np.median(zdat[(posx == i+1) & (posy ==j+1)]))
    #    grid.append(row)
    
    #ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    #hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
    #xdat1 = xdat[ind][hhsub < thresh] # low density points
    #ydat1 = ydat[ind][hhsub < thresh]
    #hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
    
    #ax.scatter(z[ind],w1mag[ind]-w2mag[ind])
    
    #im = ax.imshow(np.flipud(hh.T),
    #                cmap=mycm,
    #                extent=np.array(xyrange).flatten(),
    #                interpolation='none',
    #                aspect='auto',vmin=10)
    #ax.scatter(xdat1,ydat1)
    
    # loop over bins
    #for i in range(len(locx)):
    #    for j in range(len(locy)):
    #        print np.median(tab['LUM_UV'][ (posx == i) & (posy == j)])
    #ax.hist2d(z,
    #          w1mag-w2mag,
    #          range=xyrange,
    #          bins=bins,
    #          cmap=mycm,
    #          vmin=10.)
    
    
    with open('/home/lc585/Dropbox/IoA/QSOSED/Model/qsofit/input.yml', 'r') as f:
        parfile = yaml.load(f)
    
    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()
    
    with open('/data/lc585/QSOSED/Results/140811/allsample_2/fluxcorr.array','rb') as f:
        flxcorr = pickle.load(f)
    
    plslp1 = 0.46
    plslp2 = 0.03
    plbrk = 2822.
    bbt = 1216.
    bbflxnrm = 0.24
    elscal = 0.71
    scahal = 0.86
    galfra = 0.31
    ebv = 0.0
    imod = 18.0
    
    zs = np.arange(0.5,1.525,0.025)
    
    bbt = 1200.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1100.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1300.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1400.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1500.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1000.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    ax1.text(0.33,0.67,'1000K',fontsize=12,color='black')
    ax1.text(0.33,0.52,'1100K',fontsize=12,color='black')
    ax1.text(0.33,0.40,'1200K',fontsize=12,color='black')
    ax1.text(0.33,0.28,'1300K',fontsize=12,color='black')
    ax1.text(0.33,0.20,'1400K',fontsize=12,color='black')
    ax1.text(0.33,0.10,'1500K',fontsize=12)
    
    
    #plt.savefig('/home/lc585/Dropbox/IoA/HotDustPaper/w1w2_temp.pdf')
    
    bbt = 1216.
    bbflxnrm = 0.0
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.1
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.2
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.3
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.4
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    #plt.xlim(0.2,1.8)
    
    ax2.text(1.55,-0.1,'0.17',fontsize=12,color='black')
    ax2.text(1.55,0.38,'0.28',fontsize=12,color='black')
    ax2.text(1.55,0.60,'0.40',fontsize=12,color='black')
    ax2.text(1.55,0.75,'0.52',fontsize=12,color='black')
    ax2.text(1.55,0.90,'0.64',fontsize=12,color='black')
    
    fig.savefig('/home/lc585/thesis/figures/chapter06/w1w2_versus_redshift.pdf')
    #plt.xlabel(r'$z$',fontsize=12)
    #plt.ylabel('$W1$-$W2$',fontsize=12)
    #plt.tight_layout()
    #plt.tick_params(axis='both',which='major',labelsize=10)
    
    #sns.set_style('ticks')
    #xdat = np.arange(0.1,1.2,0.2)
    #plt.savefig('/data/lc585/QSOSED/Results/141101/figure1.jpg')
    #fig, ax = plt.subplots()
    #for row in grid:
    #    ax.plot(xdat,row)
    #ax.set_xlabel('W1-W2')
    #ax.set_ylabel('LUM BOL')
    #plt.savefig('/data/lc585/QSOSED/Results/141101/figure2.jpg')
    #plt.show()
    #plt.savefig('/home/lc585/Dropbox/IoA/HotDustPaper/w1w2_bbnorm.pdf')

    plt.show() 
    

    return None 
コード例 #5
0
def plot():

    import yaml
    from qsosed.load import load
    import numpy as np
    from qsosed.sedmodel import model
    import matplotlib.pyplot as plt
    from qsosed.pl import pl
    from qsosed.bb import bb
    import cosmolopy.distance as cd
    from PlottingTools.plot_setup_thesis import figsize, set_plot_properties
    import palettable
    from lmfit import Parameters
    from qsosed.qsrmod import qsrmod
    from qsosed.flx2mag import flx2mag

    set_plot_properties()  # change style
    cs = palettable.colorbrewer.qualitative.Set1_9.mpl_colors

    plslp1 = 0.508
    plslp2 = 0.068
    plbrk = 2944.99
    bbt = 1174.0
    bbflxnrm = 0.208
    galfra = 0.313
    elscal = 0.624
    imod = 18.0
    ebv = 0.0
    redshift = 2.0
    scahal = 0.8

    with open('/home/lc585/qsosed/input.yml', 'r') as f:
        parfile = yaml.load(f)

    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()
    flxcorr = np.array([1.0] * len(wavlen))

    params = Parameters()
    params.add('plslp1', value=-0.478)
    params.add('plslp2', value=-0.199)
    params.add('plbrk', value=2.40250)
    params.add('bbt', value=1.30626)
    params.add('bbflxnrm', value=2.673)
    params.add('elscal', value=1.240)
    params.add('scahal', value=0.713)
    params.add('galfra', value=0.0)
    params.add('bcnrm', value=0.135)
    params.add('ebv', value=0.0)
    params.add('imod', value=18.0)

    lin = fittingobj.get_lin()
    galspc = fittingobj.get_galspc()
    ext = fittingobj.get_ext()
    galcnt = fittingobj.get_galcnt()
    ignmin = fittingobj.get_ignmin()
    ignmax = fittingobj.get_ignmax()
    bp = fittingobj.get_bp()
    dlam = fittingobj.get_dlam()
    zromag = fittingobj.get_zromag()
    ftrlst = fittingobj.get_ftrlst()
    ztran = fittingobj.get_ztran()
    lyatmp = fittingobj.get_lyatmp()
    lybtmp = fittingobj.get_lybtmp()
    lyctmp = fittingobj.get_lyctmp()
    whmin = fittingobj.get_whmin()
    whmax = fittingobj.get_whmax()
    qsomag = fittingobj.get_qsomag()
    cosmo = fittingobj.get_cosmo()

    nftr = len(bp)

    redshift = 0.5

    wavlentmp, fluxtmp = qsrmod(params, parfile, wavlen, redshift, lin, galspc,
                                ext, galcnt, ignmin, ignmax, ztran, lyatmp,
                                lybtmp, lyctmp, whmin, whmax, cosmo, flxcorr,
                                qsomag)

    magtmp = flx2mag(params, wavlentmp, fluxtmp, bp, dlam, zromag, ftrlst)

    fig = plt.figure(figsize=figsize(1, vscale=0.8))
    ax1 = fig.add_subplot(111)
    ax1.loglog(wavlentmp, 0.5 * fluxtmp, color='black', label=r'$z=0.5$')

    redshift = 2.0
    wavlentmp, fluxtmp = qsrmod(params, parfile, wavlen, redshift, lin, galspc,
                                ext, galcnt, ignmin, ignmax, ztran, lyatmp,
                                lybtmp, lyctmp, whmin, whmax, cosmo, flxcorr,
                                qsomag)

    magtmp = flx2mag(params, wavlentmp, fluxtmp, bp, dlam, zromag, ftrlst)
    ax1.loglog(wavlentmp, 5 * fluxtmp, color='black', label=r'$z=2.0$')

    redshift = 3.5
    wavlentmp, fluxtmp = qsrmod(params, parfile, wavlen, redshift, lin, galspc,
                                ext, galcnt, ignmin, ignmax, ztran, lyatmp,
                                lybtmp, lyctmp, whmin, whmax, cosmo, flxcorr,
                                qsomag)

    magtmp = flx2mag(params, wavlentmp, fluxtmp, bp, dlam, zromag, ftrlst)
    ax1.loglog(wavlentmp, 50 * fluxtmp, color='black', label=r'$z=3.5$')

    ax1.set_xlabel(r'log $\lambda$ [${\rm \AA}$]')
    ax1.set_ylabel(r'log $F_{\lambda}$ [Arbitary Units]')
    # ax1.loglog(wavlentmp,1.e10/wavlentmp**2,linestyle='--')
    ax2 = ax1.twinx()
    ax2.set_yticks([])
    labs = ['u', 'g', 'r', 'i', 'z', 'Y', 'J', 'H', 'K', 'W1', 'W2', 'W3']

    xpos = fittingobj.get_lameff()
    xpos[:5] = xpos[:5] - 200.0
    xpos[5] = 10405
    xpos[6] = 12505
    xpos[7] = 16411
    xpos[8] = 21942
    xpos[9] = 33500
    xpos[10] = 46027
    xpos[11] = 112684

    ax2.text(19225, 3.923, r'$z=3.5$', ha='right')
    ax2.text(11674, 3.099, r'$z=2.0$', ha='right')
    ax2.text(6000, 2.135, r'$z=0.5$', ha='right')

    color_idx = np.linspace(0, 1, 12)

    from palettable.colorbrewer.diverging import Spectral_11_r

    for i in range(len(bp[:-1])):
        wavtmp = (bp[i][0, :])
        flxtmp = bp[i][1, :] / np.max(bp[i][1, :])
        ax2.plot(wavtmp,
                 flxtmp,
                 color=Spectral_11_r.mpl_colormap(color_idx[i]))
        # ax2.fill_between(wavtmp, flxtmp, alpha=0.2, facecolor=Spectral_11.mpl_colormap(color_idx[i]))
        ax2.text(xpos[i], 0.2, r'${}$'.format(labs[i]), ha='center')

    ax2.set_ylim(0, 5)
    ax1.set_ylim(1e-3, 200)
    ax1.set_xlim(2800, 190000)
    ax2.set_xlim(ax1.get_xlim())
    plt.tight_layout()

    fig.savefig('/home/lc585/thesis/figures/chapter05/throughput.pdf')
    plt.show()

    return None
コード例 #6
0
ファイル: sed_model_plot.py プロジェクト: liamcoatman/thesis
def plot():

    redshift = 1

    with open('/home/lc585/qsosed/input.yml', 'r') as f:
        parfile = yaml.load(f)

    # Load stuff
    fittingobj = load(parfile)
    lin = fittingobj.get_lin()
    qsomag = fittingobj.get_qsomag()
    whmin = fittingobj.get_whmin()
    whmax = fittingobj.get_whmax()
    ignmin = fittingobj.get_ignmin()
    ignmax = fittingobj.get_ignmax()
    galcnt = fittingobj.get_galcnt()
    galspc = fittingobj.get_galspc()

    wavlen = fittingobj.get_wavlen()

    fig, ax = plt.subplots(figsize=figsize(1, vscale=0.9))

    # ax.plot(wavlen,wavlen*fluxtmp,color='black')

    # import lineid_plot

    # line_wave = [1216,
    #              1549,
    #              1909,
    #              2798,
    #              4861,
    #              6563,
    #              18744]

    # line_names = [r'Ly$\alpha$',
    #               r'C\,{\sc iv}',
    #               r'C\,{\sc iii}]',
    #               r'Mg\,{\sc ii}',
    #               r'H$\beta$',
    #               r'H$\alpha$',
    #               r'Pa$\alpha$']

    # lineid_plot.plot_line_ids(wavlen, wavlen*fluxtmp, line_wave, line_names, ax=ax, arrow_tip=10000)

    plslp1 = -0.478
    plslp2 = -0.199
    plbrk = 2402
    bbt = 1306
    bbflxnrm = 3.673
    elscal = 1.240
    scahal = 0.713
    galfra = 0.4
    bcnrm = 0.135
    ebv = 0.0

    flux = np.zeros(len(wavlen), dtype=np.float)

    flxnrm = parfile['quasar']['flxnrm']
    wavnrm = parfile['quasar']['wavnrm']

    # Define normalisation constant to ensure continuity at wavbrk
    const2 = flxnrm / (wavnrm**(-plslp2))
    const1 = const2 * ((plbrk**(-plslp2)) / (plbrk**(-plslp1)))

    wavnumbrk = wav2num(wavlen, plbrk)

    flux[:wavnumbrk] = flux[:wavnumbrk] + pl(wavlen[:wavnumbrk], plslp1,
                                             const1)
    flux[wavnumbrk:] = flux[wavnumbrk:] + pl(wavlen[wavnumbrk:], plslp2,
                                             const2)

    # Now add steeper power-law component for sub-Lyman-alpha wavelengths

    # Define normalisation constant to ensure continuity at wavbrk
    plbrk_tmp = parfile['quasar']['pl_steep']['brk']
    plslp_tmp = plslp1 + parfile['quasar']['pl_steep']['step']
    plbrknum_tmp = wav2num(wavlen, plbrk_tmp)

    const_tmp = flux[plbrknum_tmp] / (plbrk_tmp**-plslp_tmp)

    flux[:plbrknum_tmp] = pl(wavlen[:plbrknum_tmp], plslp_tmp, const_tmp)

    flux_pl = flux * 1.0

    # Hot blackbody ---------------------------------------------------

    bbwavnrm = parfile['quasar']['bb']['wavnrm']

    flux = flux + bb(
        wavlen * u.AA, bbt * u.K, bbflxnrm, bbwavnrm * u.AA, units='freq')

    flux_bb = bb(wavlen * u.AA,
                 bbt * u.K,
                 bbflxnrm,
                 bbwavnrm * u.AA,
                 units='freq')

    # Balmer continuum --------------------------------------------------

    # Add Balmer Continuum and blur to simulate effect of bulk-velocity
    # shifts comparable to those present in emission lines

    # Determine height of power-law continuum at wavelength wbcnrm to allow
    # correct scaling of Balmer continuum contribution

    wbcnrm = parfile['quasar']['balmercont']['wbcnrm']
    wbedge = parfile['quasar']['balmercont']['wbedge']
    tbc = parfile['quasar']['balmercont']['tbc']
    taube = parfile['quasar']['balmercont']['taube']
    vfwhm = parfile['quasar']['balmercont']['vfwhm']

    # mean wavelength increment
    winc = np.diff(wavlen).mean()

    cfact = flux[wav2num(wavlen, wbcnrm)]
    flux = flux / cfact

    flux_bc = bc(wavlen=wavlen * u.AA,
                 tbb=tbc * u.K,
                 fnorm=bcnrm,
                 taube=taube,
                 wavbe=wbedge * u.AA,
                 wnorm=wbcnrm * u.AA)

    vsigma = vfwhm * (u.km / u.s) / 2.35
    wsigma = wbedge * u.AA * vsigma / const.c
    wsigma = wsigma.to(u.AA)
    psigma = wsigma / (winc * u.AA)

    # Performs a simple Gaussian smooth with dispersion psigma pixels
    gauss = Gaussian1DKernel(stddev=psigma)
    flux_bc = convolve(flux_bc, gauss)

    flux = flux + flux_bc

    #-----------------------------------------------------------------

    # Now convert to flux per unit wavelength
    # Presumably the emission line spectrum and galaxy spectrum
    # are already in flux per unit wavelength.

    # c / lambda^2 conversion
    flux = flux * (u.erg / u.s / u.cm**2 / u.Hz)
    flux = flux.to(u.erg / u.s / u.cm**2 / u.AA,
                   equivalencies=u.spectral_density(wavlen * u.AA))
    scale = flux[wav2num(wavlen, wavnrm)]
    flux = flxnrm * flux / scale

    flux_pl = flux_pl * (u.erg / u.s / u.cm**2 / u.Hz)
    flux_pl = flux_pl.to(u.erg / u.s / u.cm**2 / u.AA,
                         equivalencies=u.spectral_density(wavlen * u.AA))
    flux_pl = flxnrm * flux_pl / scale

    flux_bb = flux_bb * (u.erg / u.s / u.cm**2 / u.Hz)
    flux_bb = flux_bb.to(u.erg / u.s / u.cm**2 / u.AA,
                         equivalencies=u.spectral_density(wavlen * u.AA))
    flux_bb = flxnrm * flux_bb / scale

    flux_bc = flux_bc * (u.erg / u.s / u.cm**2 / u.Hz)
    flux_bc = flux_bc.to(u.erg / u.s / u.cm**2 / u.AA,
                         equivalencies=u.spectral_density(wavlen * u.AA))
    flux_bc = flxnrm * flux_bc / scale

    # Emission lines -------------------------------------------------

    linwav, linval, conval = lin[:, 0], lin[:, 1], lin[:, 2]

    # Normalise such that continuum flux at wavnrm equal to that
    # of the reference continuum at wavnrm
    inorm = wav2num(wavlen, wavnrm)
    scale = flux[inorm]
    flux = conval[inorm] * flux / scale
    flux_pl = conval[inorm] * flux_pl / scale
    flux_bb = conval[inorm] * flux_bb / scale
    flux_bc = conval[inorm] * flux_bc / scale

    # Calculate Baldwin Effect Scaling for Halpha
    zbenrm = parfile['quasar']['el']['zbenrm']
    beslp = parfile['quasar']['el']['beslp']

    # Line added to stop enormous BE evolution at low z
    zval = np.max([redshift, zbenrm])

    # I think this is the absolute magnitude of the SDSS sample as
    # a function of redshift, which is not the same as how the
    # absolute magnitude of a object of a given flux changes
    # as a function of redshift
    qsomag_itp = interp1d(qsomag[:, 0], qsomag[:, 1])

    # Absolute magnitude at redshift z minus
    # normalisation absolute magnitude
    vallum = qsomag_itp(zval) - qsomag_itp(zbenrm)

    # Convert to luminosity
    vallum = 10.0**(-0.4 * vallum)

    scabe = vallum**(-beslp)

    flux_el = np.zeros_like(flux)
    flux_el[:whmin] = linval[:whmin] * np.abs(
        elscal) * flux[:whmin] / conval[:whmin]
    flux_el[whmax:] = linval[whmax:] * np.abs(
        elscal) * flux[whmax:] / conval[whmax:]

    flux[:whmin] = flux[:whmin] + linval[:whmin] * np.abs(
        elscal) * flux[:whmin] / conval[:whmin]
    flux[whmax:] = flux[whmax:] + linval[whmax:] * np.abs(
        elscal) * flux[whmax:] / conval[whmax:]

    # Scaling for Ha with Baldwin effect
    scatmp = elscal * scahal / scabe
    flux_el[whmin:whmax] = linval[whmin:whmax] * np.abs(
        scatmp) * flux[whmin:whmax] / conval[whmin:whmax]
    flux[whmin:whmax] = flux[whmin:whmax] + \
                        linval[whmin:whmax] * np.abs(scatmp) * flux[whmin:whmax] / conval[whmin:whmax]

    gznorm = parfile['gal']['znrm']
    gplind = parfile['gal']['plind']

    # Determine fraction of galaxy sed to add to unreddened quasar SED
    qsocnt = np.sum(flux[ignmin:ignmax])

    # Factor cscale just to bring input galaxy and quasar flux zero-points equal
    cscale = qsocnt / galcnt

    # Find absolute magnitude of quasar at redshift z
    vallum = qsomag_itp(redshift)

    # Find absolute magnitude of quasar at redshift gznorm
    galnrm = qsomag_itp(gznorm)

    # Subtract supplied normalisation absolute magnitude
    vallum = vallum - galnrm

    # Convert to a luminosity
    vallum = 10.0**(-0.4 * vallum)

    # Luminosity scaling
    scaval = vallum**(gplind - 1.0)

    scagal = (galfra / (1.0 - galfra)) * scaval

    flux_gal = cscale * scagal * galspc
    # flux = flux + cscale * scagal * galspc

    ax.plot(wavlen[:wavnumbrk],
            wavlen[:wavnumbrk] * flux_pl[:wavnumbrk],
            color=cs[1],
            label='Accretion Disc')
    # ax.fill_between(wavlen[:wavnumbrk], wavlen[:wavnumbrk]*flux_pl[:wavnumbrk], facecolor=cs[1], alpha=0.2)
    ax.plot(wavlen[wavnumbrk:],
            wavlen[wavnumbrk:] * flux_pl[wavnumbrk:],
            color=cs[0],
            label='Accretion Disc')
    # ax.fill_between(wavlen[wavnumbrk:], wavlen[wavnumbrk:]*flux_pl[wavnumbrk:], facecolor=cs[0], alpha=0.2)
    ax.plot(wavlen, wavlen * (flux_bc), color=cs[2], label='Balmer Continuum')
    # ax.fill_between(wavlen, wavlen*(flux_bc), facecolor=cs[2], alpha=0.2)
    ax.plot(wavlen, wavlen * (flux_bb), color=cs[4], label='Hot Dust')
    # ax.fill_between(wavlen, wavlen*(flux_bb), facecolor=cs[4], alpha=0.2)
    # ax.plot(wavlen, wavlen*(flux_gal), color=cs[3], label='Galaxy')
    # ax.fill_between(wavlen, wavlen*(flux_gal), facecolor=cs[3], alpha=0.2)

    ax.plot(wavlen, wavlen * flux, color='black', label='Total')

    ax.legend()

    ax.set_xlim(1216, 20000)
    ax.set_ylim(0, 10000)
    ax.set_ylabel(r'${\lambda}F_{\lambda}$ [Arbitary Units]')
    ax.set_xlabel(r'Wavelength $\lambda$ [${\rm \AA}$]')

    plt.tight_layout()
    plt.subplots_adjust(top=0.85)

    fig.savefig('/home/lc585/thesis/figures/chapter05/sed_model.pdf')

    plt.show()

    return None
コード例 #7
0
def plot():

    set_plot_properties()  # change style

    with open('/home/lc585/qsosed/input.yml', 'r') as f:
        parfile = yaml.load(f)

    fittingobj = load(parfile)

    df = get_data()

    zs = np.linspace(1, 3.0, 100)
    wavlen = fittingobj.get_wavlen()

    uvintmin = np.argmin(np.abs(wavlen - 2000.))
    uvintmax = np.argmin(np.abs(wavlen - 9000.))
    irintmin = np.argmin(np.abs(wavlen - 10000.))
    irintmax = np.argmin(np.abs(wavlen - 30000.))

    def ratiogoal(rg):

        ratio = 0.0
        bbflxnrm = 0.0
        z = 2.0
        bbt = 1306
        plslp1 = -0.478
        plslp2 = -0.199
        plbrk = 2402.0
        flxnrm = 1.0
        wavnrm = 5500.0
        bbwavnrm = 20000.0

        # while ratio < rg:

        #     flux = np.zeros(len(wavlen), dtype=np.float)

        #     # Define normalisation constant to ensure continuity at wavbrk
        #     const2 = flxnrm / (wavnrm**(-plslp2))
        #     const1 = const2 * ((plbrk**(-plslp2)) / (plbrk**(-plslp1)))

        #     wavnumbrk = wav2num(wavlen, plbrk)

        #     flux[:wavnumbrk] = flux[:wavnumbrk] + pl(wavlen[:wavnumbrk], plslp1, const1)
        #     flux[wavnumbrk:] = flux[wavnumbrk:] + pl(wavlen[wavnumbrk:], plslp2, const2)

        #     # Hot blackbody ---------------------------------------------------

        #     bbflux = bb(wavlen*u.AA,
        #                 bbt*u.K,
        #                 bbflxnrm,
        #                 bbwavnrm*u.AA,
        #                 units='freq')

        #     flux = flux*(u.erg / u.s / u.cm**2 / u.Hz)
        #     flux = flux.to(u.erg / u.s / u.cm**2 / u.AA,
        #                    equivalencies=u.spectral_density(wavlen * u.AA))

        #     bbflux = bbflux*(u.erg / u.s / u.cm**2 / u.Hz)
        #     bbflux = bbflux.to(u.erg / u.s / u.cm**2 / u.AA,
        #                        equivalencies=u.spectral_density(wavlen * u.AA))

        #     ratio = np.sum(bbflux[irintmin:irintmax]) / np.sum(flux[uvintmin:uvintmax])
        #     bbflxnrm = bbflxnrm + 0.01

        # print ratio, bbflxnrm
        # parfile['quasar']['bb']['flxnrm'] = bbflxnrm

        print rg
        if rg == 0.5: parfile['quasar']['bb']['flxnrm'] = 4.47
        elif rg == 0.4: parfile['quasar']['bb']['flxnrm'] = 3.58
        elif rg == 0.3: parfile['quasar']['bb']['flxnrm'] = 2.69
        elif rg == 0.2: parfile['quasar']['bb']['flxnrm'] = 1.8
        elif rg == 0.1: parfile['quasar']['bb']['flxnrm'] = 0.91
        elif rg == 0.0: parfile['quasar']['bb']['flxnrm'] = 0.0

        cols = []

        for z in zs:

            magtmp, wavlentmp, fluxtmp = model(redshift=z, parfile=parfile)

            cols.append(magtmp[9] - magtmp[10])

        return cols

    fig, ax = plt.subplots(figsize=figsize(1.0, vscale=0.7))

    mycm = cm.get_cmap('Blues_r')
    mycm.set_under('w')
    mycm = truncate_colormap(mycm, 0.0, 0.8)
    cset = brewer2mpl.get_map('Blues', 'sequential', 9).mpl_colors

    #histogram definition
    xyrange = [[1, 3], [0, 2]]  # data range
    bins = [50, 50]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = df.z_HW, df.W1VEGA - df.W2VEGA

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax.imshow(np.flipud(hh.T),
                   cmap=mycm,
                   extent=np.array(xyrange).flatten(),
                   interpolation='none',
                   aspect='auto',
                   vmin=thresh,
                   vmax=45)

    cb = plt.colorbar(im)
    cb.set_label('Number of Objects')

    ax.scatter(xdat1, ydat1, color=cset[-1], s=3)

    cset = brewer2mpl.get_map('YlOrRd', 'sequential', 8).mpl_colors

    ax.plot(zs, ratiogoal(0.5), c=cset[7], linewidth=2.0, label=r'0.5')
    ax.plot(zs, ratiogoal(0.4), c=cset[6], linewidth=2.0, label=r'0.4')
    ax.plot(zs, ratiogoal(0.3), c=cset[5], linewidth=2.0, label=r'0.3')
    ax.plot(zs, ratiogoal(0.2), c=cset[4], linewidth=2.0, label=r'0.2')
    ax.plot(zs, ratiogoal(0.1), c=cset[3], linewidth=2.0, label=r'0.1')
    ax.plot(zs, ratiogoal(0.0), c=cset[2], linewidth=2.0, label=r'0.0')

    ax.set_xlabel(r'Redshift $z$')
    ax.set_ylabel(r'$W1-W2$')

    ax.set_xlim(1, 4)
    ax.set_ylim(0.2, 2)

    ax.text(0.72,
            0.7,
            r'${\mathrm R_{\mathrm NIR/UV}}$',
            transform=ax.transAxes)
    plt.legend(frameon=False, loc=(0.7, 0.15))

    plt.tight_layout()

    fig.savefig(
        '/home/lc585/thesis/figures/chapter05/w1w2_versus_redshift_ratio.pdf')

    plt.show()

    return None
コード例 #8
0
def plot(): 

    """
    Generates residual plot using model parameters in input.yml
    """

    set_plot_properties() # change style 

    with open('/home/lc585/qsosed/input.yml', 'r') as f:
        parfile = yaml.load(f)

    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()
    lin = fittingobj.get_lin()
    galspc = fittingobj.get_galspc()
    ext = fittingobj.get_ext()
    galcnt = fittingobj.get_galcnt()
    ignmin = fittingobj.get_ignmin()
    ignmax = fittingobj.get_ignmax()
    ztran = fittingobj.get_ztran()
    lyatmp = fittingobj.get_lyatmp()
    lybtmp = fittingobj.get_lybtmp()
    lyctmp = fittingobj.get_lyctmp()
    whmin = fittingobj.get_whmin()
    whmax = fittingobj.get_whmax()
    qsomag = fittingobj.get_qsomag()
    flxcorr = fittingobj.get_flxcorr()
    cosmo = fittingobj.get_cosmo() 

    # Load median magnitudes 
    with open('/home/lc585/qsosed/sdss_ukidss_wise_medmag_ext.dat') as f:
        datz = np.loadtxt(f, usecols=(0,))

    datz = datz[:-5]

    # Load filters
    ftrlst = fittingobj.get_ftrlst()[2:-2] 
    lameff = fittingobj.get_lameff()[2:-2]
    bp = fittingobj.get_bp()[2:-2] # these are in ab and data is in vega 
    dlam = fittingobj.get_bp()[2:-2]
    zromag = fittingobj.get_zromag()[2:-2]

    with open('ftgd_dr7.dat') as f:
        ftgd = np.loadtxt(f, skiprows=1, usecols=(1,2,3,4,5,6,7,8,9))

    fname = '/home/lc585/qsosed/sdss_ukidss_wise_medmag_ext.dat'
    datarr = np.genfromtxt(fname, usecols=(5,7,9,11,13,15,17,19,21)) 
    datarr[datarr < 0.0] = np.nan 

    datarr = datarr[:-5, :]


    params = Parameters()
    params.add('plslp1', value = -0.478)
    params.add('plslp2', value = -0.199)
    params.add('plbrk', value = 2.40250)
    params.add('bbt', value = 1.30626)
    params.add('bbflxnrm', value = 2.673)
    params.add('elscal', value = 1.240)
    params.add('scahal',value = 0.713)
    params.add('galfra',value = 0.0)
    params.add('bcnrm',value = 0.135)
    params.add('ebv',value = 0.0)
    params.add('imod',value = 18.0)       

    modarr = residual(params,
                      parfile,
                      wavlen,
                      datz,
                      lin,
                      bp,
                      dlam,
                      zromag,
                      galspc,
                      ext,
                      galcnt,
                      ignmin,
                      ignmax,
                      ztran,
                      lyatmp,
                      lybtmp,
                      lyctmp,
                      ftrlst,
                      whmin,
                      whmax,
                      cosmo,
                      flxcorr,
                      qsomag,
                      ftgd)
    
    lameff = lameff.reshape( len(lameff), 1)
    lameff = np.repeat(lameff,len(datz),axis=1)
    
    datz = datz.reshape(1, len(datz) )
    datz = np.repeat(datz,len(lameff),axis=0)
    lam = lameff / (1.0 + datz)
    res = np.ndarray.transpose(modarr - datarr)
    

    
    fig = plt.figure(figsize=figsize(1, 0.8))
    ax = fig.add_subplot(1,1,1)
    colormap = plt.cm.Paired
    plt.gca().set_color_cycle([colormap(i) for i in np.linspace(0, 0.8, 9)])
    labels = ['r','i','z','Y','J','H','K','W1','W2']
    for i in range(9):
        ax.plot(lam[i,:], res[i,:], label=labels[i])
    
    ax.grid() 
        
    ax.set_xlim(1000,30000)
    ax.set_ylim(-0.3,0.3)
    ax.set_xlabel(r'Rest Frame Wavelength [${\rm \AA}$]')
    ax.set_ylabel(r'$m_{\rm mod} - m_{\rm dat}$')
    plt.legend(prop={'size':10})
    plt.tick_params(axis='both',which='major')
    plt.tight_layout()

    plt.savefig('/home/lc585/thesis/figures/chapter05/model_residuals.pdf')

    plt.show() 

    return None