def benchmarking_pi2_multi(device, qubit_ids, *params, interleaver=None, two_qubit_gate=None, max_pulses=None, pause_length=0, random_sequence_num=1, seq_lengths_num=400, two_qubit_num=0, random_gate_num=1): channel_amplitudes_ = {} pi2_pulses = {} pi_pulses = {} generators = {} if max_pulses is None: max_pulses = [] for qubit_id in qubit_ids: coherence_measurement = Ramsey.get_Ramsey_coherence_measurement( device, qubit_id) T2 = float(coherence_measurement.metadata['T']) pi2_pulses[qubit_id] = excitation_pulse.get_excitation_pulse( device, qubit_id, np.pi / 2.) pi2_pulse_length = float(pi2_pulses[qubit_id].metadata['length']) pi_pulses[qubit_id] = excitation_pulse.get_excitation_pulse( device, qubit_id, np.pi) pi_pulse_length = float(pi_pulses[qubit_id].metadata['length']) max_pulses.append(T2 / pi2_pulse_length) if two_qubit_gate is not None: max_pulses = np.asarray(max_pulses) / 3. max_pulses = min(max_pulses) for qubit_id in qubit_ids: pi2_pulses[qubit_id] = excitation_pulse.get_excitation_pulse( device, qubit_id, np.pi / 2.) pi_pulses[qubit_id] = excitation_pulse.get_excitation_pulse( device, qubit_id, np.pi) channel_amplitudes_[qubit_id] = channel_amplitudes.channel_amplitudes( device.exdir_db.select_measurement_by_id( pi2_pulses[qubit_id].references['channel_amplitudes'])) seq_lengths = np.asarray( np.round(np.linspace(0, max_pulses, seq_lengths_num)), int) def get_pulse_seq_z(z_phase, length, qubit_id): fast_control = False z_pulse = [(c, device.pg.virtual_z, z_phase * 360 / 2 / np.pi, fast_control) for c, a in channel_amplitudes_[qubit_id].items()] sequence_z = [device.pg.pmulti(device, length, *tuple(z_pulse))] return sequence_z def tensor_product(unitary, qubit_id): U = [[1]] for i in qubit_ids: U = np.kron(U, np.identity(2) if i != qubit_id else unitary) return U #TODO qubit_readout_pulse, readout_device = calibrated_readout.get_calibrated_measurer( device, qubit_ids) generators = {} for qubit_id in qubit_ids: HZ = { 'X': { 'pulses': pi_pulses[qubit_id].get_pulse_sequence(0), 'unitary': tensor_product(np.asarray([[0, 1], [1, 0]]), qubit_id), 'price': 1.0 }, 'X/2': { 'pulses': pi2_pulses[qubit_id].get_pulse_sequence(0), 'unitary': np.sqrt(0.5) * tensor_product(np.asarray([[1, -1j], [-1j, 1]]), qubit_id), 'price': 1.0 }, '-X/2': { 'pulses': pi2_pulses[qubit_id].get_pulse_sequence(np.pi), 'unitary': np.sqrt(0.5) * tensor_product(np.asarray([[1, 1j], [1j, 1]]), qubit_id), 'price': 1.0 }, 'Z': { 'pulses': get_pulse_seq_z(np.pi, pi2_pulse_length, qubit_id), 'unitary': tensor_product([[1, 0], [0, -1]], qubit_id), 'price': 0.1 }, 'Z/2': { 'pulses': get_pulse_seq_z(np.pi / 2, pi2_pulse_length, qubit_id), 'unitary': tensor_product([[1, 0], [0, 1j]], qubit_id), 'price': 0.1 }, '-Z/2': { 'pulses': get_pulse_seq_z(-np.pi / 2., pi2_pulse_length, qubit_id), 'unitary': tensor_product([[1, 0], [0, -1j]], qubit_id), 'price': 0.1 }, 'I': { 'pulses': get_pulse_seq_z(0, pi2_pulse_length, qubit_id), 'unitary': tensor_product([[1, 0], [0, 1]], qubit_id), 'price': 0.1 } } generators[qubit_id] = HZ if len(qubit_ids) == 2: #TODO HZ_group = clifford.two_qubit_clifford( *tuple([g for g in generators.values()]), plus_op_parallel=device.pg.parallel, two_qubit_gate=two_qubit_gate) elif len(qubit_ids) == 1: HZ_group = clifford.generate_group(generators[qubit_ids[0]]) else: raise ValueError('More than two qubits are unsupported') print('group length:', len(HZ_group)) # TODO qubit sequencer exitation_channel = [ i for i in device.get_qubit_excitation_channel_list(qubit_ids[0]).keys() ][0] ex_channel = device.awg_channels[exitation_channel] if ex_channel.is_iq(): control_seq_id = ex_channel.parent.sequencer_id else: control_seq_id = ex_channel.channel // 2 ex_sequencers = [] for seq_id in device.pre_pulses.seq_in_use: if seq_id != control_seq_id: ex_seq = zi_scripts.SIMPLESequence(sequencer_id=seq_id, awg=device.modem.awg, awg_amp=1, use_modulation=True, pre_pulses=[]) else: ex_seq = zi_scripts.SIMPLESequence(sequencer_id=seq_id, awg=device.modem.awg, awg_amp=1, use_modulation=True, pre_pulses=[], control=True) control_sequence = ex_seq device.pre_pulses.set_seq_offsets(ex_seq) device.pre_pulses.set_seq_prepulses(ex_seq) ex_seq.start() ex_sequencers.append(ex_seq) seeds = np.random.randint(100000, size=(random_sequence_num, len(qubit_ids), len(seq_lengths))) references = {'seeds': seeds} pi2_bench = interleaved_benchmarking.interleaved_benchmarking( readout_device, ex_sequencers, seeds, seq_lengths, interleavers=HZ_group, random_sequence_num=random_sequence_num, two_qubit_num=two_qubit_num, random_gate_num=random_gate_num) #TODO prepare_seq prepare_seq = pi2_bench.create_hdawg_generator() sequence_control.set_preparation_sequence(device, ex_sequencers, prepare_seq) #TODO readout sequence #ro_seq = [device.pg.pmulti(pause_length)]+device.trigger_readout_seq+qubit_readout_pulse.get_pulse_sequence() readout_sequencer = sequence_control.define_readout_control_seq( device, qubit_readout_pulse) readout_sequencer.start() pi2_bench.random_sequence_num = random_sequence_num seeds_ids = np.arange(seeds.shape[0]) references = references.update({('pi2_pulse', qubit_id): pi2_pulses[qubit_id].id for qubit_id in qubit_ids}) references = references.update({('pi_pulse', qubit_id): pi_pulses[qubit_id].id for qubit_id in qubit_ids}) # TODO # pi2_bench.prepare_random_interleaving_sequences() ### search db for previous version of the interleaver measurement found = False try: clifford_bench = device.exdir_db.select_measurement( measurement_type='clifford_bench', metadata={'qubit_ids': ','.join(qubit_ids)}, references_that=references) found = True except IndexError: pass if random_sequence_num > 1: params = tuple([(seeds_ids, pi2_bench.set_interleaved_sequence, 'Random seeds id', '')] + [p for p in params]) if (not found) or (interleaver is None): measurement_name = [m for m in pi2_bench.get_points().keys()][0] fitter_arguments = (measurement_name, exp.exp_fitter(), 0, np.arange(len(params)).tolist()) clifford_bench = device.sweeper.sweep_fit_dataset_1d_onfly( pi2_bench, (seq_lengths, pi2_bench.set_sequence_length, 'Gate number', ''), *params, fitter_arguments=fitter_arguments, measurement_type='clifford_bench', metadata={'qubit_ids': ','.join(qubit_ids)}, shuffle=True, references=references) ## interleaver measurement is found, bench "interleaver" gate references['Clifford-bench'] = clifford_bench.id if interleaver is not None: if 'references' in interleaver: references.update(interleaver['references']) pi2_bench.set_target_pulse(interleaver) measurement_name = [m for m in pi2_bench.get_points().keys()][0] fitter_arguments = (measurement_name, exp.exp_fitter(), 0, np.arange(len(params)).tolist()) interleaved_bench = device.sweeper.sweep_fit_dataset_1d_onfly( pi2_bench, (seq_lengths, pi2_bench.set_sequence_length, 'Gate number', ''), *params, fitter_arguments=fitter_arguments, measurement_type='interleaved_bench', metadata={'qubit_ids': ','.join(qubit_ids)}, shuffle=True, references=references) return interleaved_bench return clifford_bench
def benchmarking_pi2_multi(device, qubit_ids, *params, interleaver=None, two_qubit_gate=None, max_pulses=None, pause_length=0, random_sequence_num=1, seq_lengths_num=400): channel_amplitudes_ = {} pi2_pulses = {} generators = {} if max_pulses is None: max_pulses = [] for qubit_id in qubit_ids: coherence_measurement = Ramsey.get_Ramsey_coherence_measurement( device, qubit_id) T2 = float(coherence_measurement.metadata['T']) pi2_pulses[qubit_id] = excitation_pulse.get_excitation_pulse( device, qubit_id, np.pi / 2.) pi2_pulse_length = float(pi2_pulses[qubit_id].metadata['length']) max_pulses.append(T2 / pi2_pulse_length) if two_qubit_gate is not None: max_pulses = np.asarray(max_pulses) / 3. max_pulses = min(max_pulses) for qubit_id in qubit_ids: pi2_pulses[qubit_id] = excitation_pulse.get_excitation_pulse( device, qubit_id, np.pi / 2.) channel_amplitudes_[qubit_id] = channel_amplitudes.channel_amplitudes( device.exdir_db.select_measurement_by_id( pi2_pulses[qubit_id].references['channel_amplitudes'])) seq_lengths = np.asarray( np.round(np.linspace(0, max_pulses, seq_lengths_num)), int) def get_pulse_seq_z(z_phase, qubit_id): pg = device.pg z_pulse = [(c, vz, z_phase) for c, a in channel_amplitudes_[qubit_id].items()] sequence_z = [pg.pmulti(0, *tuple(z_pulse))] return sequence_z def tensor_product(unitary, qubit_id): U = [[1]] for i in qubit_ids: U = np.kron(U, np.identity(2) if i != qubit_id else unitary) return U qubit_readout_pulse, readout_device = calibrated_readout.get_calibrated_measurer( device, qubit_ids) generators = {} for qubit_id in qubit_ids: HZ = { 'H_' + qubit_id: { 'pulses': get_pulse_seq_z(np.pi / 2, qubit_id) + pi2_pulses[qubit_id].get_pulse_sequence(np.pi) + get_pulse_seq_z(np.pi / 2, qubit_id), 'unitary': np.sqrt(0.5) * tensor_product([[1, 1], [1, -1]], qubit_id), 'price': 1.0 }, 'Z_' + qubit_id: { 'pulses': get_pulse_seq_z(np.pi, qubit_id), 'unitary': tensor_product([[1, 0], [0, -1]], qubit_id), 'price': 0.1 }, 'Z/2_' + qubit_id: { 'pulses': get_pulse_seq_z(np.pi / 2, qubit_id), 'unitary': tensor_product([[1, 0], [0, 1j]], qubit_id), 'price': 0.1 }, '-Z/2_' + qubit_id: { 'pulses': get_pulse_seq_z(-np.pi / 2., qubit_id), 'unitary': tensor_product([[1, 0], [0, -1j]], qubit_id), 'price': 0.1 }, 'I_' + qubit_id: { 'pulses': [], 'unitary': tensor_product([[1, 0], [0, 1]], qubit_id), 'price': 0.1 } } generators[qubit_id] = HZ if len(qubit_ids) == 2: HZ_group = clifford.two_qubit_clifford( *tuple([g for g in generators.values()]), plus_op_parallel=device.pg.parallel, cphase=two_qubit_gate) elif len(qubit_ids) == 1: HZ_group = clifford.generate_group(generators[qubit_ids[0]]) else: raise ValueError('More than two qubits are unsupported') print('group length:', len(HZ_group)) ro_seq = [ device.pg.pmulti(pause_length) ] + device.trigger_readout_seq + qubit_readout_pulse.get_pulse_sequence() pi2_bench = interleaved_benchmarking.interleaved_benchmarking( readout_device, set_seq=lambda x: device.pg.set_seq(device.pre_pulses + x + ro_seq), interleavers=HZ_group) pi2_bench.random_sequence_num = random_sequence_num random_sequence_ids = np.arange(random_sequence_num) references = {('pi2_pulse', qubit_id): pi2_pulses[qubit_id].id for qubit_id in qubit_ids} pi2_bench.prepare_random_interleaving_sequences() ### search db for previous version of the interleaver measurement found = False try: clifford_bench = device.exdir_db.select_measurement( measurement_type='clifford_bench', metadata={'qubit_ids': ','.join(qubit_ids)}, references_that=references) found = True except IndexError: pass if random_sequence_num > 1: params = tuple([(random_sequence_ids, pi2_bench.set_interleaved_sequence, 'Random sequence id', '')] + [p for p in params]) if (not found) or (interleaver is None): measurement_name = [m for m in pi2_bench.get_points().keys()][0] fitter_arguments = (measurement_name, exp.exp_fitter(), 0, np.arange(len(params)).tolist()) clifford_bench = device.sweeper.sweep_fit_dataset_1d_onfly( pi2_bench, (seq_lengths, pi2_bench.set_sequence_length_and_regenerate, 'Gate number', ''), *params, fitter_arguments=fitter_arguments, measurement_type='clifford_bench', metadata={'qubit_ids': ','.join(qubit_ids)}, shuffle=True, references=references) ## interleaver measurement is found, bench "interleaver" gate references['Clifford-bench'] = clifford_bench.id if interleaver is not None: if 'references' in interleaver: references.update(interleaver['references']) pi2_bench.set_target_pulse(interleaver) measurement_name = [m for m in pi2_bench.get_points().keys()][0] fitter_arguments = (measurement_name, exp.exp_fitter(), 0, np.arange(len(params)).tolist()) interleaved_bench = device.sweeper.sweep_fit_dataset_1d_onfly( pi2_bench, (seq_lengths, pi2_bench.set_sequence_length_and_regenerate, 'Gate number', ''), *params, fitter_arguments=fitter_arguments, measurement_type='interleaved_bench', metadata={'qubit_ids': ','.join(qubit_ids)}, shuffle=True, references=references) return interleaved_bench return clifford_bench
def benchmarking_pi2(device, qubit_id, *params, pause_length=0, random_sequence_num=1, seq_lengths_num=400): coherence_measurement = Ramsey.get_Ramsey_coherence_measurement( device, qubit_id) T2 = float(coherence_measurement.metadata['T']) pi2_pulse = excitation_pulse.get_excitation_pulse(device, qubit_id, np.pi / 2.) pi2_pulse_length = float(pi2_pulse.metadata['length']) pi_pulse = excitation_pulse.get_excitation_pulse(device, qubit_id, np.pi) pi_pulse_length = float(pi_pulse.metadata['length']) channel_amplitudes_ = channel_amplitudes.channel_amplitudes( device.exdir_db.select_measurement_by_id( pi2_pulse.references['channel_amplitudes'])) max_pulses = T2 / pi2_pulse_length seq_lengths = np.asarray( np.round(np.linspace(0, max_pulses, seq_lengths_num)), int) def get_pulse_seq_z(z_phase, length): fast_control = False z_pulse = [(c, device.pg.virtual_z, z_phase * 360 / 2 / np.pi, fast_control) for c, a in channel_amplitudes_.items()] sequence_z = [device.pg.pmulti(device, length, *tuple(z_pulse))] return sequence_z #TODO qubit_readout_pulse, readout_device = calibrated_readout.get_calibrated_measurer( device, [qubit_id]) #HZ = {'X': {'pulses': pi_pulse.get_pulse_sequence(0), 'unitary': np.asarray([[0, 1], [1, 0]]), 'price': 1.0}, # 'X/2': {'pulses': pi2_pulse.get_pulse_sequence(0), 'unitary': np.sqrt(0.5) * np.asarray([[1, -1j], [-1j, 1]]), 'price': 1.0}, # '-X/2': {'pulses': pi2_pulse.get_pulse_sequence(np.pi), 'unitary': np.sqrt(0.5) * np.asarray([[1, 1j], [1j, 1]]), 'price': 1.0}, # 'Z': {'pulses': get_pulse_seq_z(np.pi), 'unitary': np.asarray([[1, 0], [0, -1]]), 'price':0.1}, # 'Z/2': {'pulses': get_pulse_seq_z(np.pi / 2), 'unitary': np.asarray([[1, 0], [0, 1j]]), 'price':0.1}, # '-Z/2': {'pulses': get_pulse_seq_z(-np.pi / 2.), 'unitary': np.asarray([[1, 0], [0, -1j]]), 'price':0.1}, # 'I': {'pulses': get_pulse_seq_z(0, qubit_id), 'unitary': np.asarray([[1, 0], [0, 1]]), 'price':0.1} # } #X_metadata = pi_pulse.metadata() #X2_metadata = pi2_pulse.metadata() #X_2_metadata = pi2_pulse.metadata() #X_2_metadata['amplitude'] = float(a) * float(self.metadata['amplitude']) * np.exp(1j * phase) HZ = { 'X': { 'pulses': pi_pulse.get_pulse_sequence(0), 'unitary': np.asarray([[0, 1], [1, 0]]), 'price': 1.0 }, 'X/2': { 'pulses': pi2_pulse.get_pulse_sequence(0), 'unitary': np.sqrt(0.5) * np.asarray([[1, -1j], [-1j, 1]]), 'price': 1.0 }, '-X/2': { 'pulses': pi2_pulse.get_pulse_sequence(np.pi), 'unitary': np.sqrt(0.5) * np.asarray([[1, 1j], [1j, 1]]), 'price': 1.0 }, 'Z': { 'pulses': get_pulse_seq_z(np.pi, pi2_pulse_length), 'unitary': np.asarray([[1, 0], [0, -1]]), 'price': 0.1 }, 'Z/2': { 'pulses': get_pulse_seq_z(np.pi / 2, pi2_pulse_length), 'unitary': np.asarray([[1, 0], [0, 1j]]), 'price': 0.1 }, '-Z/2': { 'pulses': get_pulse_seq_z(-np.pi / 2., pi2_pulse_length), 'unitary': np.asarray([[1, 0], [0, -1j]]), 'price': 0.1 }, 'I': { 'pulses': get_pulse_seq_z(0, pi2_pulse_length), 'unitary': np.asarray([[1, 0], [0, 1]]), 'price': 0.1 } } HZ_group = clifford.generate_group(HZ) #TODO qubit sequencer exitation_channel = [ i for i in device.get_qubit_excitation_channel_list(qubit_id).keys() ][0] ex_channel = device.awg_channels[exitation_channel] if ex_channel.is_iq(): control_seq_id = ex_channel.parent.sequencer_id else: control_seq_id = ex_channel.channel // 2 ex_sequencers = [] for seq_id in device.pre_pulses.seq_in_use: if seq_id != control_seq_id: ex_seq = zi_scripts.SIMPLESequence(sequencer_id=seq_id, awg=device.modem.awg, awg_amp=1, use_modulation=True, pre_pulses=[]) else: ex_seq = zi_scripts.SIMPLESequence(sequencer_id=seq_id, awg=device.modem.awg, awg_amp=1, use_modulation=True, pre_pulses=[], control=True) control_sequence = ex_seq device.pre_pulses.set_seq_offsets(ex_seq) device.pre_pulses.set_seq_prepulses(ex_seq) ex_seq.start() ex_sequencers.append(ex_seq) pi2_bench = interleaved_benchmarking.interleaved_benchmarking( readout_device, ex_sequencers, HZ_group) #pi2_bench.interleavers = HZ_group #TODO prepare_seq prepare_seq = pi2_bench.create_hdawg_generator() sequence_control.set_preparation_sequence(device, ex_sequencers, prepare_seq) # TODO Readout sequencer #ro_seq = [device.pg.pmulti(pause_length)]+device.trigger_readout_seq+qubit_readout_pulse.get_pulse_sequence() readout_sequencer = sequence_control.define_readout_control_seq( device, qubit_readout_pulse) readout_sequencer.start() #pi2_bench = interleaved_benchmarking.interleaved_benchmarking(readout_device, # set_seq = lambda x: device.pg.set_seq(device.pre_pulses+x+ro_seq)) #pi2_bench.interleavers = HZ_group pi2_bench.random_sequence_num = random_sequence_num random_sequence_ids = np.arange(random_sequence_num) pi2_bench.prepare_random_interleaving_sequences() clifford_bench = device.sweeper.sweep( pi2_bench, (seq_lengths, pi2_bench.set_sequence_length_and_regenerate, 'Gate number', ''), *params, (random_sequence_ids, pi2_bench.set_interleaved_sequence, 'Random sequence id', ''), shuffle=True, measurement_type='pi2_bench', metadata={'qubit_id': qubit_id}, references={ 'pi2_pulse': pi2_pulse.id, 'pi_pulse': pi_pulse.id }) return clifford_bench
def benchmarking_pi2(device, qubit_id, *params, pause_length=0, random_sequence_num=1, seq_lengths_num=400): coherence_measurement = Ramsey.get_Ramsey_coherence_measurement( device, qubit_id) T2 = float(coherence_measurement.metadata['T']) pi2_pulse = excitation_pulse.get_excitation_pulse(device, qubit_id, np.pi / 2.) pi2_pulse_length = float(pi2_pulse.metadata['length']) channel_amplitudes_ = channel_amplitudes.channel_amplitudes( device.exdir_db.select_measurement_by_id( pi2_pulse.references['channel_amplitudes'])) max_pulses = T2 / pi2_pulse_length seq_lengths = np.asarray( np.round(np.linspace(0, max_pulses, seq_lengths_num)), int) def get_pulse_seq_z(z_phase): pg = device.pg z_pulse = [(c, vz, z_phase) for c, a in channel_amplitudes_.items()] sequence_z = [pg.pmulti(0, *tuple(z_pulse))] return sequence_z qubit_readout_pulse, readout_device = calibrated_readout.get_calibrated_measurer( device, [qubit_id]) HZ = { 'H': { 'pulses': get_pulse_seq_z(np.pi / 2) + pi2_pulse.get_pulse_sequence(np.pi) + get_pulse_seq_z(np.pi / 2), 'unitary': np.sqrt(0.5) * np.asarray([[1, 1], [1, -1]]), 'price': 1.0 }, 'Z': { 'pulses': get_pulse_seq_z(np.pi), 'unitary': np.asarray([[1, 0], [0, -1]]), 'price': 0.1 }, 'Z/2': { 'pulses': get_pulse_seq_z(np.pi / 2), 'unitary': np.asarray([[1, 0], [0, 1j]]), 'price': 0.1 }, '-Z/2': { 'pulses': get_pulse_seq_z(-np.pi / 2.), 'unitary': np.asarray([[1, 0], [0, -1j]]), 'price': 0.1 }, 'I': { 'pulses': [], 'unitary': np.asarray([[1, 0], [0, 1]]), 'price': 0.1 } } HZ_group = clifford.generate_group(HZ) ro_seq = [ device.pg.pmulti(pause_length) ] + device.trigger_readout_seq + qubit_readout_pulse.get_pulse_sequence() pi2_bench = interleaved_benchmarking.interleaved_benchmarking( readout_device, set_seq=lambda x: device.pg.set_seq(device.pre_pulses + x + ro_seq)) pi2_bench.interleavers = HZ_group pi2_bench.random_sequence_num = random_sequence_num random_sequence_ids = np.arange(random_sequence_num) pi2_bench.prepare_random_interleaving_sequences() clifford_bench = device.sweeper.sweep( pi2_bench, (seq_lengths, pi2_bench.set_sequence_length_and_regenerate, 'Gate number', ''), *params, (random_sequence_ids, pi2_bench.set_interleaved_sequence, 'Random sequence id', ''), shuffle=True, measurement_type='pi2_bench', metadata={'qubit_id': qubit_id}, references={'pi2_pulse': pi2_pulse.id}) return clifford_bench