コード例 #1
0
ファイル: test_qsymm.py プロジェクト: dnnagy/kwantproject
def test_honeycomb():
    lat = kwant.lattice.honeycomb(norbs=1)

    # Test simple honeycomb model with constant terms
    # Add discrete symmetries to the kwant builder as well, to check that they are
    # returned as well.
    syst = kwant.Builder(symmetry=TranslationalSymmetry(*lat.prim_vecs))
    syst[lat.a(0, 0)] = 1
    syst[lat.b(0, 0)] = 1
    syst[lat.neighbors(1)] = -1

    H = builder_to_model(syst)
    sg, cs = symmetries(H, hexagonal(sympy_R=False), prettify=True)
    assert len(sg) == 24
    assert len(cs) == 0

    # Test simple honeycomb model with value functions
    syst = kwant.Builder(symmetry=TranslationalSymmetry(*lat.prim_vecs))
    syst[lat.a(0, 0)] = lambda site, ma: ma
    syst[lat.b(0, 0)] = lambda site, mb: mb
    syst[lat.neighbors(1)] = lambda site1, site2, t: t

    H = builder_to_model(syst)
    sg, cs = symmetries(H, hexagonal(sympy_R=False), prettify=True)
    assert len(sg) == 12
    assert len(cs) == 0
コード例 #2
0
ファイル: test_qsymm.py プロジェクト: dnnagy/kwantproject
def test_higher_dim():
    # Test 0D finite system
    lat = kwant.lattice.cubic(norbs=1)
    syst = kwant.Builder()
    syst[lat(0, 0, 0)] = 1
    syst[lat(1, 1, 0)] = 1
    syst[lat(0, 1, 1)] = 1
    syst[lat(1, 0, -1)] = 1
    syst[lat(0, 0, 0), lat(1, 1, 0)] = -1
    syst[lat(0, 0, 0), lat(0, 1, 1)] = -1
    syst[lat(0, 0, 0), lat(1, 0, -1)] = -1

    H = builder_to_model(syst)
    sg, cs = symmetries(H, prettify=True)
    assert len(sg) == 2
    assert len(cs) == 5

    # Test triangular lattice system embedded in 3D
    sym = TranslationalSymmetry([1, 1, 0], [0, 1, 1])
    lat = kwant.lattice.cubic(norbs=1)
    syst = kwant.Builder(symmetry=sym)
    syst[lat(0, 0, 0)] = 1
    syst[lat(0, 0, 0), lat(1, 1, 0)] = -1
    syst[lat(0, 0, 0), lat(0, 1, 1)] = -1
    syst[lat(0, 0, 0), lat(1, 0, -1)] = -1

    H = builder_to_model(syst)
    sg, cs = symmetries(H, hexagonal(sympy_R=False), prettify=True)
    assert len(sg) == 24
    assert len(cs) == 0
コード例 #3
0
ファイル: test_qsymm.py プロジェクト: NPopiel/MPhil
def test_real_space_basis():
    lat = kwant.lattice.honeycomb(norbs=[1, 1])
    sym = kwant.TranslationalSymmetry(lat.vec((1, 0)), lat.vec((0, 1)))
    bulk = kwant.Builder(sym)
    bulk[[lat.a(0, 0), lat.b(0, 0)]] = 0
    bulk[lat.neighbors()] = 1

    # Including real space symmetries
    symmetries = find_builder_symmetries(bulk)
    hex_group_2D = hexagonal()
    hex_group_2D = set(
        PointGroupElement(
            np.array(s.R).astype(float), s.conjugate, s.antisymmetry, None)
        for s in hex_group_2D)
    assert len(symmetries) == len(hex_group_2D)
    assert all([
        s1 in symmetries and s2 in hex_group_2D
        for s1, s2 in zip(hex_group_2D, symmetries)
    ])

    # Only onsite discrete symmetries
    symmetries = find_builder_symmetries(bulk, spatial_symmetries=False)
    onsites = [
        PointGroupElement(np.eye(2), True, False, None),  # T
        PointGroupElement(np.eye(2), True, True, None),  # P
        PointGroupElement(np.eye(2), False, True, None),  # C
        PointGroupElement(np.eye(2), False, False, None)
    ]  # I
    assert len(symmetries) == len(onsites)
    assert all([
        s1 in symmetries and s2 in onsites
        for s1, s2 in zip(onsites, symmetries)
    ])