コード例 #1
0
def test_build_sets():
    """
    Tests whether the Gaussian quadrature method is properly storing
    the orders that have already been computed
    """
    x, w = gaussian_quad.gaussxw(3)
    x2, w2 = gaussian_quad.gaussxw(12)
    np.testing.assert_almost_equal(x, gaussian_quad.x_set[3])
    np.testing.assert_almost_equal(w, gaussian_quad.w_set[3])
    np.testing.assert_almost_equal(x2, gaussian_quad.x_set[12])
    np.testing.assert_almost_equal(w2, gaussian_quad.w_set[12])
コード例 #2
0
def test_build_sets():
    """
    Tests whether the Gaussian quadrature method is properly storing
    the orders that have already been computed
    """
    x, w = gaussian_quad.gaussxw(3)
    x2, w2 = gaussian_quad.gaussxw(12)
    np.testing.assert_almost_equal(x, gaussian_quad.x_set[3])
    np.testing.assert_almost_equal(w, gaussian_quad.w_set[3])
    np.testing.assert_almost_equal(x2, gaussian_quad.x_set[12])
    np.testing.assert_almost_equal(w2, gaussian_quad.w_set[12])
コード例 #3
0
def test_interp_telles():
    # The problem I solve:
    # exact is from mathematica
    sing_pt = 1.005
    denom = lambda x: (sing_pt - x)**2
    numer = lambda x: x**3
    f = lambda x: numer(x) / denom(x)
    exact_f = lambda s: (s * (-4 + 6 * s ** 2 - 3 * s * (-1 + s ** 2) * \
                                (log((-1 - s) / (1 - s))))) / (-1 + s ** 2)
    exact = exact_f(sing_pt)

    # Solved with standard Telles quadrature
    x_nearest = 1.0
    D = sing_pt - 1.0
    N = 14
    [tx, tw] = telles_quasi_singular(N, x_nearest, D)
    est_telles = np.sum(f(tx) * tw)

    # Solved with gauss quadrature
    [gx, gw] = gaussxw(N)
    est_gauss = np.sum(f(gx) * gw)

    # Solved with interpolation and Telles quadrature
    # X = Interpolation Points
    X = gx
    # Y = Value of function at the interpolation points
    Y = f(gx) * denom(gx)
    # WARNING, WARNING, WARNING: This implementation of lagrange interpolation
    # is super unstable. I just downloaded it from somewhere online. A
    # reimplementation using barycentric Lagrange interpolation is necessary to
    # go above N = appx 20.
    P = spi.lagrange(X, Y)

    est_interp_telles = sum(P(tx) / denom(tx) * tw)
    np.testing.assert_almost_equal(est_telles, est_interp_telles)
コード例 #4
0
def test_interp_telles():
    # The problem I solve:
    # exact is from mathematica
    sing_pt = 1.005;
    denom = lambda x: (sing_pt - x) ** 2;
    numer = lambda x: x ** 3;
    f = lambda x: numer(x) / denom(x);
    exact_f = lambda s: (s * (-4 + 6 * s ** 2 - 3 * s * (-1 + s ** 2) * \
                                (log((-1 - s) / (1 - s))))) / (-1 + s ** 2)
    exact = exact_f(sing_pt)

    # Solved with standard Telles quadrature
    x_nearest = 1.0;
    D = sing_pt - 1.0;
    N = 14;
    [tx, tw] = telles_quasi_singular(N, x_nearest, D);
    est_telles = np.sum(f(tx) * tw)

    # Solved with gauss quadrature
    [gx, gw] = gaussxw(N)
    est_gauss = np.sum(f(gx) * gw)

    # Solved with interpolation and Telles quadrature
    # X = Interpolation Points
    X = gx;
    # Y = Value of function at the interpolation points
    Y = f(gx) * denom(gx);
    # WARNING, WARNING, WARNING: This implementation of lagrange interpolation
    # is super unstable. I just downloaded it from somewhere online. A
    # reimplementation using barycentric Lagrange interpolation is necessary to
    # go above N = appx 20.
    P = spi.lagrange(X, Y)

    est_interp_telles = sum(P(tx) / denom(tx) * tw)
    np.testing.assert_almost_equal(est_telles, est_interp_telles)
コード例 #5
0
def test_QuadGauss():
    f = lambda x: 3 * x ** 2
    F = lambda x: x ** 3
    exact = F(1) - F(0)
    x, w = gaussian_quad.gaussxw(2)
    x, w = map_pts_wts(x, w, 0, 1)
    est = np.sum(f(x) * w)
    np.testing.assert_almost_equal(exact, est)
コード例 #6
0
def test_QuadGauss():
    f = lambda x: 3 * x**2
    F = lambda x: x**3
    exact = F(1) - F(0)
    x, w = gaussian_quad.gaussxw(2)
    x, w = map_pts_wts(x, w, 0, 1)
    est = np.sum(f(x) * w)
    np.testing.assert_almost_equal(exact, est)
コード例 #7
0
def test_anotherLogRDouble_G11():
    f = lambda x, y: (1 / (3 * np.pi)) *\
        np.log(1.0 / np.abs(x - y)) * x * y
    exact = 1 / (3 * np.pi)
    gx, gw = gaussxw(75)
    sum = 0.0
    for (pt, wt) in zip(gx, gw):
        x, w = telles_singular(76, pt)
        g = lambda x: f(x, pt)
        sum += np.sum(g(x) * w * wt)
    np.testing.assert_almost_equal(exact, sum, 5)
コード例 #8
0
def test_gauss():
    """
    Exact values retrieved from the wikipedia page on Gaussian Quadrature
    The main function has been tested by the original author for a wide
    range of orders. But, this is just to check everything is still working
    properly
    """
    x, w = gaussian_quad.gaussxw(3)
    x, w = map_pts_wts(x, w, -1.0, 1.0)
    np.testing.assert_almost_equal(x[0], sqrt(3.0 / 5.0))
    np.testing.assert_almost_equal(x[1], 0.0)
    np.testing.assert_almost_equal(x[2], -sqrt(3.0 / 5.0))
    np.testing.assert_almost_equal(w[0], (5.0 / 9.0))
    np.testing.assert_almost_equal(w[1], (8.0 / 9.0))
    np.testing.assert_almost_equal(w[2], (5.0 / 9.0))
コード例 #9
0
def test_gauss():
    """
    Exact values retrieved from the wikipedia page on Gaussian Quadrature
    The main function has been tested by the original author for a wide
    range of orders. But, this is just to check everything is still working
    properly
    """
    x, w = gaussian_quad.gaussxw(3)
    x, w = map_pts_wts(x, w, -1.0, 1.0)
    np.testing.assert_almost_equal(x[0], sqrt(3.0 / 5.0))
    np.testing.assert_almost_equal(x[1], 0.0)
    np.testing.assert_almost_equal(x[2], -sqrt(3.0 / 5.0))
    np.testing.assert_almost_equal(w[0], (5.0 / 9.0))
    np.testing.assert_almost_equal(w[1], (8.0 / 9.0))
    np.testing.assert_almost_equal(w[2], (5.0 / 9.0))
コード例 #10
0
def test_quasi_singular():
    #test telles quasi-singular quadrature with the example on page 966
    # sing_pt = 1.08
    sing_pt = 1.004
    g = lambda x: (sing_pt - x) ** -2

    # for sing_pt = 1.08
    # exact = 12.0192
    # for sing_pt = 1.004
    exact = 249.500998
    x_nearest = 1.0
    D = sing_pt - 1.0
    N = 20
    [tx, tw] = telles_quasi_singular(N, x_nearest, D)
    est_telles = np.sum(g(tx) * tw)
    [gx, gw] = gaussxw(N)
    est_gauss = np.sum(g(gx) * gw)

    gauss_error = abs(est_gauss - exact) / exact * 100
    telles_error = abs(est_telles - exact) / exact * 100
    assert(telles_error < gauss_error / 1000)