コード例 #1
0
    def test_bprop(self):
        r = []

        context = Context()
        for i in xrange(self.N):
            a = self.get_random_array()
            a_gpu = Connector(GpuMatrix.from_npa(a, 'float'), bu_device_id=context)
            vpooling_block = MeanPoolingBlock(a_gpu, axis=0)
            voutput, dL_dvoutput = vpooling_block.output.register_usage(context, context)
            _dL_voutput = self.get_random_array((dL_dvoutput.nrows, dL_dvoutput.ncols))
            GpuMatrix.from_npa(_dL_voutput, 'float').copy_to(context, dL_dvoutput)

            hpooling_block = MeanPoolingBlock(a_gpu, axis=1)
            houtput, dL_dhoutput = hpooling_block.output.register_usage(context, context)
            _dL_houtput = self.get_random_array((dL_dhoutput.nrows, dL_dhoutput.ncols))
            GpuMatrix.from_npa(_dL_houtput, 'float').copy_to(context, dL_dhoutput)

            vpooling_block.fprop()
            vpooling_block.bprop()
            dL_dmatrix = vpooling_block.dL_dmatrix.to_host()
            r.append(np.allclose(dL_dmatrix,
                                 np.repeat(_dL_voutput/a.shape[0], a.shape[0], 0),
                                 atol=1e-6))

            hpooling_block.fprop()
            hpooling_block.bprop()
            hpooling_block.dL_dmatrix.to_host()
            dL_dmatrix = hpooling_block.dL_dmatrix.to_host()
            r.append(np.allclose(dL_dmatrix,
                                 np.repeat(_dL_houtput/a.shape[1], a.shape[1], 1),
                                 atol=1e-6))

        self.assertEqual(sum(r), 2 * self.N)
コード例 #2
0
    def test_fprop(self):
        r = []

        for i in xrange(self.N):
            a = self.get_random_array()
            a_gpu = Connector(GpuMatrix.from_npa(a, 'float'))
            vpooling_block = MeanPoolingBlock(a_gpu, axis=0)
            hpooling_block = MeanPoolingBlock(a_gpu, axis=1)

            vpooling_block.fprop()
            r.append(
                np.allclose(vpooling_block.output.to_host(),
                            np.mean(a, axis=0, keepdims=True),
                            atol=1e-6))
            hpooling_block.fprop()
            r.append(
                np.allclose(hpooling_block.output.to_host(),
                            np.mean(a, axis=1, keepdims=True),
                            atol=1e-6))

        self.assertEqual(sum(r), 2 * self.N)
コード例 #3
0
    def test_fprop(self):
        r = []

        for i in xrange(self.N):
            a = self.get_random_array()
            a_gpu = Connector(GpuMatrix.from_npa(a, 'float'))
            vpooling_block = MeanPoolingBlock(a_gpu, axis=0)
            hpooling_block = MeanPoolingBlock(a_gpu, axis=1)

            vpooling_block.fprop()
            r.append(np.allclose(vpooling_block.output.to_host(),
                                 np.mean(a, axis=0, keepdims=True),
                                 atol=1e-6))
            hpooling_block.fprop()
            r.append(np.allclose(hpooling_block.output.to_host(),
                                 np.mean(a, axis=1, keepdims=True),
                                 atol=1e-6))

        self.assertEqual(sum(r), 2 * self.N)
コード例 #4
0
    def test_bprop(self):
        r = []

        context = Context()
        for i in xrange(self.N):
            a = self.get_random_array()
            a_gpu = Connector(GpuMatrix.from_npa(a, 'float'),
                              bu_device_id=context)
            vpooling_block = MeanPoolingBlock(a_gpu, axis=0)
            voutput, dL_dvoutput = vpooling_block.output.register_usage(
                context, context)
            _dL_voutput = self.get_random_array(
                (dL_dvoutput.nrows, dL_dvoutput.ncols))
            GpuMatrix.from_npa(_dL_voutput,
                               'float').copy_to(context, dL_dvoutput)

            hpooling_block = MeanPoolingBlock(a_gpu, axis=1)
            houtput, dL_dhoutput = hpooling_block.output.register_usage(
                context, context)
            _dL_houtput = self.get_random_array(
                (dL_dhoutput.nrows, dL_dhoutput.ncols))
            GpuMatrix.from_npa(_dL_houtput,
                               'float').copy_to(context, dL_dhoutput)

            vpooling_block.fprop()
            vpooling_block.bprop()
            dL_dmatrix = vpooling_block.dL_dmatrix.to_host()
            r.append(
                np.allclose(dL_dmatrix,
                            np.repeat(_dL_voutput / a.shape[0], a.shape[0], 0),
                            atol=1e-6))

            hpooling_block.fprop()
            hpooling_block.bprop()
            hpooling_block.dL_dmatrix.to_host()
            dL_dmatrix = hpooling_block.dL_dmatrix.to_host()
            r.append(
                np.allclose(dL_dmatrix,
                            np.repeat(_dL_houtput / a.shape[1], a.shape[1], 1),
                            atol=1e-6))

        self.assertEqual(sum(r), 2 * self.N)