コード例 #1
0
def main():

    with qr.energy_units("1/cm"):
        mol1 = qr.Molecule([0.0, 12000.0])
        mol2 = qr.Molecule([0.0, 12100.0])
        mol3 = qr.Molecule([0.0, 12100.0])

        agg = qr.Aggregate([mol1, mol2, mol3])

        m1 = qr.Mode(100)
        mol1.add_Mode(m1)

        m2 = qr.Mode(100)
        mol2.add_Mode(m2)

        m3 = qr.Mode(100)
        mol3.add_Mode(m3)

    agg.build(mult=1)

    print(agg.Ntot)
コード例 #2
0
###############################################################################
#
#
#  MODEL DEFINITION
#
#
###############################################################################

#
# Create a two-level molecule with one intra-molecular harmonic mode
#
with qr.energy_units("1/cm"):
    mol = qr.Molecule(elenergies=[0.0, E1])
    mol.set_dipole(0, 1, [1.0, 0.0, 1.0])

    mod = qr.Mode(frequency=omega)

    mol.add_Mode(mod)

    mod.set_nmax(0, Ng)
    mod.set_nmax(1, Ne)

    mod.set_HR(1, hr_factor)

    mol.set_transition_width((0, 1), width)

#
# Create an aggregate
#
agg = qr.Aggregate(molecules=[mol])
コード例 #3
0
                    pass
            if dist_OK:
                mol.position = pos_n
                placed_molecules.append(mol)
                placed = True
                previous_position = pos_n
                qr.log_info("Placing molecule no.", i_m, "at:", mol.position)

# Vibrational modesif True:
Ne_max = 2
Ng_max = 2
vomega = 100
hr_fac = 0.01
with qr.energy_units("1/cm"):
    for i_m in range(N_molecules):
        mod = qr.Mode(vomega)
        mols[i_m].add_Mode(mod)
        mod.set_nmax(0, Ng_max)
        mod.set_nmax(1, Ne_max)
        mod.set_HR(1, hr_fac)

# Bath correlation functions
timea = qr.TimeAxis(0.0, 1000, 1.0)
cfpar = dict(ftype="OverdampedBrownian",
             reorg=30,
             cortime=100,
             T=300,
             matsubara=100)
with qr.energy_units("1/cm"):
    cf = qr.CorrelationFunction(timea, cfpar)
コード例 #4
0
def run(omega,
        HR,
        dE,
        JJ,
        rate,
        E0,
        vib_loc="up",
        use_vib=True,
        stype=qr.signal_REPH,
        make_movie=False,
        save_eUt=False,
        t2_save_pathways=[],
        dname=None,
        trimer=None,
        disE=None):
    """Runs a complete set of simulations for a single set of parameters


    If disE is not None it tries to run averaging over Gaussian energetic
    disorder.

    """
    if dname is None:
        dname = "sim_" + vib_loc

    use_trimer = trimer["useit"]

    rate_sp = trimer["rate"]

    #
    #  PARAMETERS FROM INPUT FILE
    #
    dip1 = INP.dip1  # [1.5, 0.0, 0.0]
    dip2 = INP.dip2  # [-1.0, -1.0, 0.0]
    width = INP.feature_width  # 100.0
    width2 = INP.feature_width2

    normalize_maps_to_maximu = False
    trim_maps = False

    units = "1/cm"
    with qr.energy_units(units):

        data_descr = "_dO=" + str(dE) + "_omega=" + str(omega) + "_HR=" + str(
            HR) + "_J=" + str(JJ)

        if use_vib:
            sys_char = "_vib"
        else:
            sys_char = "_ele"
        data_ext = sys_char + ".png"
        obj_ext = sys_char + ".qrp"

    # parameters of the SP
    if use_trimer:
        E2 = trimer["E2"]
        epsa = (E0 + E2) / 2.0
        DE = trimer["DE"]
        J2 = 0.5 * numpy.sqrt(((E0 - E2)**2) - (DE**2))
        ESP2 = epsa + DE / 2.0
        ESP1 = epsa - DE / 2.0

    #
    #   Model system is a dimer of molecules
    #
    with qr.energy_units("1/cm"):

        if not use_trimer:

            mol1 = qr.Molecule([0.0, E0])
            mol2 = qr.Molecule([0.0, E0 + dE])

            print("Monomer 1 energy:", E0)
            print("Monomer 2 energy:", E0 + dE)

        else:

            if disE is not None:
                mol1 = qr.Molecule([0.0, ESP2 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 (SP_high) energy:", ESP2 + disE[0])
                print("Monomer 2 (B) energy:", E0 + dE + disE[1])
            else:
                mol1 = qr.Molecule([0.0, ESP2])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 (SP_high) energy:", ESP2)
                print("Monomer 2 (B) energy:", E0 + dE)
            if disE is not None:
                mol3 = qr.Molecule([0.0, ESP1 + disE[2]])
                print("Monomer 3 (SP_low) energy:", ESP1 + disE[2])
            else:
                mol3 = qr.Molecule([0.0, ESP1])
                print("Monomer 3 (SP_low) energy:", ESP1)
            mol3.set_transition_width((0, 1), width2)
            mol3.set_dipole(0, 1, trimer["dipsp"])

        mol1.set_transition_width((0, 1), width2)
        mol1.set_dipole(0, 1, dip1)

        mol2.set_transition_width((0, 1), width)
        mol2.set_dipole(0, 1, dip2)

    if use_trimer:
        agg = qr.Aggregate([mol1, mol2, mol3])
    else:
        agg = qr.Aggregate([mol1, mol2])

    if use_trimer:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)
            print("B - SP_high coupling:", JJ)
            agg.set_resonance_coupling(0, 2, J2)
            print("SP coupling:", J2)

    else:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)

    #
    # Electronic only aggregate
    #
    agg_el = agg.deepcopy()

    #
    # if nuclear vibrations are to be added, do it here
    #
    if use_vib:

        with qr.energy_units("1/cm"):
            mod1 = qr.Mode(omega)
            mod2 = qr.Mode(omega)

        if vib_loc == "down":
            set_vib = [True, False]
        elif vib_loc == "up":
            set_vib = [False, True]
        elif vib_loc == "both":
            set_vib = [True, True]
        else:
            raise Exception("Unknown location of the vibrations")

        if set_vib[0]:
            print("Vibrations set for SP_high molecule")
            mol1.add_Mode(mod1)
            mod1.set_nmax(0, INP.no_g_vib)
            mod1.set_nmax(1, INP.no_e_vib)
            mod1.set_HR(1, HR)

        if set_vib[1]:
            print("Vibrations set for B molecule")
            mol2.add_Mode(mod2)
            mod2.set_nmax(0, INP.no_g_vib)
            mod2.set_nmax(1, INP.no_e_vib)
            mod2.set_HR(1, HR)

    agg3 = agg.deepcopy()

    agg.build(mult=1)
    agg_el.build(mult=1)

    HH = agg.get_Hamiltonian()
    He = agg_el.get_Hamiltonian()

    #
    # Laboratory setup
    #
    lab = qr.LabSetup()
    lab.set_polarizations(pulse_polarizations=[X, X, X],
                          detection_polarization=X)

    t2_N_steps = INP.t2_N_steps
    t2_time_step = INP.t2_time_step
    time2 = qr.TimeAxis(0.0, t2_N_steps, t2_time_step)

    cont_p = qr.TwoDResponseContainer(t2axis=time2)
    cont_m = qr.TwoDResponseContainer(t2axis=time2)
    #
    # spectra will be indexed by the times in the time axis `time2`
    #
    cont_p.use_indexing_type(time2)

    #
    # We define two-time axes, which will be FFTed and will define
    # the omega_1 and omega_3 axes of the 2D spectrum
    #
    t1_N_steps = INP.t1_N_steps
    t1_time_step = INP.t1_time_step
    t3_N_steps = INP.t3_N_steps
    t3_time_step = INP.t3_time_step
    t1axis = qr.TimeAxis(0.0, t1_N_steps, t1_time_step)
    t3axis = qr.TimeAxis(0.0, t3_N_steps, t3_time_step)

    #
    # This calculator calculated 2D spectra from the effective width
    #
    msc = qr.MockTwoDResponseCalculator(t1axis, time2, t3axis)
    with qr.energy_units("1/cm"):
        msc.bootstrap(rwa=E0, shape="Gaussian")

    #
    # System-bath interaction including vibrational states
    #
    operators = []
    rates = []

    if use_trimer:

        print("Relaxation rates: ", rate, rate_sp)

        with qr.eigenbasis_of(He):
            if He.data[3, 3] < He.data[2, 2]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(2, 3, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("2<-3", He.data[2, 2], He.data[3, 3])
            rates.append(rate)
            print("Transfer time B -> SP:", 1.0 / rate)
            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1<-2", He.data[1, 1], He.data[2, 2])
            rates.append(rate_sp)
            print("Transfer time P+ -> P-:", 1.0 / rate_sp)

        # include detailed balace
        if detailed_balance:
            with qr.eigenbasis_of(He):
                T = INP.temperature  #77.0
                Den = (He.data[3, 3] - He.data[2, 2]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(3, 2, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)
        else:
            with qr.eigenbasis_of(He):
                if He.data[2, 2] < He.data[1, 1]:
                    Exception("Electronic states not orderred!")
                operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            rates.append(rate)

        # include detailed balace
        if detailed_balance:
            with qr.eigenbasis_of(He):
                T = INP.temperature  #77.0
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)

    sbi = qr.qm.SystemBathInteraction(sys_operators=operators, rates=rates)
    sbi.set_system(agg)

    #
    # Liouville form for relaxation
    #
    LF = qr.qm.ElectronicLindbladForm(HH, sbi, as_operators=True)

    #
    # Pure dephasing
    #
    p_deph = qr.qm.ElectronicPureDephasing(agg, dtype="Gaussian")

    # we simplify calculations by converting dephasing to
    # corresponding Lorentzian form
    p_deph.convert_to("Lorentzian")

    eUt = qr.qm.EvolutionSuperOperator(time2,
                                       HH,
                                       relt=LF,
                                       pdeph=p_deph,
                                       mode="all")
    eUt.set_dense_dt(INP.fine_splitting)

    #
    # We calculate evolution superoperator
    #
    eUt.calculate(show_progress=False)

    # save the evolution operator
    if save_eUt:
        eut_name = os.path.join(
            dname, "eUt" + "_omega2=" + str(omega) + data_descr + obj_ext)
        eUt.save(eut_name)

    #
    # Prepare aggregate with all states (including 2-EX band)
    #
    agg3.build(mult=2)
    agg3.diagonalize()

    pways = dict()

    olow_cm = omega - INP.omega_uncertainty / 2.0
    ohigh_cm = omega + INP.omega_uncertainty / 2.0
    olow = qr.convert(olow_cm, "1/cm", "int")
    ohigh = qr.convert(ohigh_cm, "1/cm", "int")

    for t2 in time2.data:

        # this could save some memory of pathways become too big
        pways = dict()

        print("T2 =", t2)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [olow, ohigh]]])
        pws = pways[str(t2)]
        npa = len(pws)
        print(" p:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_p.set_spectrum(twod)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [-ohigh,
                                                               -olow]]])

        pws = pways[str(t2)]
        npa = len(pws)
        print(" m:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(-omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_m.set_spectrum(twod)

    if make_movie:
        with qr.energy_units("1/cm"):
            cont_p.make_movie("mov.mp4")

    #
    # Save aggregate when a single calculation is done
    #
    if save_eUt:
        fname = os.path.join(dname, "aggregate.qrp")
        agg3.save(fname)

    #
    # Window function for subsequenty FFT
    #
    window = func.Tukey(time2, r=INP.tukey_window_r, sym=False)

    #
    # FFT with the window function
    #
    # Specify REPH, NONR or `total` to get different types of spectra
    #
    print("Calculating FFT of the 2D maps")
    #fcont = cont.fft(window=window, dtype=stype) #, dpart="real", offset=0.0)

    fcont_p_re = cont_p.fft(window=window, dtype=qr.signal_REPH)
    fcont_p_nr = cont_p.fft(window=window, dtype=qr.signal_NONR)
    fcont_p_to = cont_p.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_p_re.normalize2(dpart=qr.part_ABS)
        fcont_p_nr.normalize2(dpart=qr.part_ABS)
        fcont_p_to.normalize2(dpart=qr.part_ABS)

    fcont_m_re = cont_m.fft(window=window, dtype=qr.signal_REPH)
    fcont_m_nr = cont_m.fft(window=window, dtype=qr.signal_NONR)
    fcont_m_to = cont_m.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_m_re.normalize2(dpart=qr.part_ABS)
        fcont_m_nr.normalize2(dpart=qr.part_ABS)
        fcont_m_to.normalize2(dpart=qr.part_ABS)

    if trim_maps:
        twin = INP.trim_maps_to
        with qr.energy_units("1/cm"):
            fcont_p_re.trimall_to(window=twin)
            fcont_p_nr.trimall_to(window=twin)
            fcont_p_to.trimall_to(window=twin)

    show_omega = omega

    with qr.frequency_units("1/cm"):
        sp1_p_re, show_Npoint1 = fcont_p_re.get_nearest(show_omega)
        sp2_p_re, show_Npoint2 = fcont_p_re.get_nearest(-show_omega)
        sp1_p_nr, show_Npoint1 = fcont_p_nr.get_nearest(show_omega)
        sp2_p_nr, show_Npoint2 = fcont_p_nr.get_nearest(-show_omega)
        sp1_p_to, show_Npoint1 = fcont_p_to.get_nearest(show_omega)
        sp2_p_to, show_Npoint2 = fcont_p_to.get_nearest(-show_omega)
        sp1_m_re, show_Npoint1 = fcont_m_re.get_nearest(show_omega)
        sp2_m_re, show_Npoint2 = fcont_m_re.get_nearest(-show_omega)
        sp1_m_nr, show_Npoint1 = fcont_m_nr.get_nearest(show_omega)
        sp2_m_nr, show_Npoint2 = fcont_m_nr.get_nearest(-show_omega)
        sp1_m_to, show_Npoint1 = fcont_m_to.get_nearest(show_omega)
        sp2_m_to, show_Npoint2 = fcont_m_to.get_nearest(-show_omega)

    with qr.energy_units(units):

        if show_plots:

            #
            # Spots to look at in detail
            #
            with qr.energy_units("1/cm"):
                with qr.eigenbasis_of(He):
                    Ep_l = He.data[1, 1]
                    Ep_u = He.data[2, 2]

            Ep = numpy.zeros((4, 2))
            Ep[0, 0] = Ep_l
            Ep[0, 1] = Ep_l
            Ep[1, 0] = Ep_l
            Ep[1, 1] = Ep_u
            Ep[2, 0] = Ep_u
            Ep[2, 1] = Ep_l
            Ep[3, 0] = Ep_u
            Ep[3, 1] = Ep_u

            print("\nPlotting and saving spectrum at frequency:",
                  fcont_p_re.axis.data[show_Npoint1], units)

            fftf_1 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=REPH" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_re.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Rephasing\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_re.savefig(fftf_1)
            print("... saved into: ", fftf_1)
            fftf_2 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=NONR" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_nr.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Non-rephasing\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_nr.savefig(fftf_2)
            print("... saved into: ", fftf_2)
            fftf_3 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=tot" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_to.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Total\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_to.savefig(fftf_3)
            print("... saved into: ", fftf_3)

            #
            # Point evolutions at the expected peak positions
            #

            for ii in range(4):
                points = fcont_p_re.get_point_evolution(
                    Ep[ii, 0], Ep[ii, 1], fcont_p_re.axis)
                points.apply_to_data(numpy.abs)
                if ii >= 3:
                    points.plot(show=True)
                else:
                    points.plot(show=False)

            print("\nPlotting and saving spectrum at frequency:",
                  fcont_m_re.axis.data[show_Npoint2], units)
            fftf_4 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=REPH" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_re.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Rephasing\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_re.savefig(fftf_4)
            print("... saved into: ", fftf_4)
            fftf_5 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=NONR" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_nr.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Non-rephasing\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_nr.savefig(fftf_5)
            print("... saved into: ", fftf_5)
            fftf_6 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=tot" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_to.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Total\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_to.savefig(fftf_6)
            print("... saved into: ", fftf_6)

            #
            # Point evolutions at the expected peak positions
            #
            for ii in range(4):
                points = fcont_p_re.get_point_evolution(
                    Ep[ii, 0], Ep[ii, 1], fcont_m_re.axis)
                points.apply_to_data(numpy.abs)
                if ii >= 3:
                    points.plot(show=True)
                else:
                    points.plot(show=False)

    save_containers = False

    if save_containers:
        fname = os.path.join(dname, "cont_p" + data_descr + obj_ext)
        print("Saving container into: " + fname)
        cont_p.save(fname)
        fname = os.path.join(dname, "cont_m" + data_descr + obj_ext)
        print("Saving container into: " + fname)
        cont_m.save(fname)

    import resource
    memo = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / (1024 * 1024)
    print("Memory usage: ", memo, "in MB")

    return (sp1_p_re, sp1_p_nr, sp2_m_re, sp2_m_nr)
コード例 #5
0
Nmods = 2
Nmax_g = 3
Nmax_e = 3

with qr.energy_units("1/cm"):

    # two-level molecule
    mol = qr.Molecule([0.0, E0])
    mol.set_dipole(0, 1, [1.0, 0.0, 0.0])

    # modes of vibratinal motion
    for ii in range(Nmods):
        frq = freqs[ii]
        hr = hrs[ii]

        mod = qr.Mode(frequency=frq)
        mol.add_Mode(mod)
        mod.set_HR(N=1, hr=hr)
        mod.set_nmax(N=1, nmax=Nmax_e)
        mod.set_nmax(N=0, nmax=Nmax_g)

# single member aggregate
# (needs to be created to allow spectroscopic calculations)
agg = qr.Aggregate(molecules=[mol])

# setting system bath interaction to provide lineshape
with qr.energy_units("1/cm"):
    mol.set_transition_width((0, 1), width)

# building aggregate
agg.build()
コード例 #6
0
def run(omega,
        HR,
        dE,
        JJ,
        rate,
        E0,
        vib_loc="up",
        use_vib=True,
        detailed_balance=False,
        temperature=77.0,
        stype=qr.signal_REPH,
        save_eUt=False,
        t2_save_pathways=[],
        dname=None,
        trimer=None,
        disE=None):
    """Runs a complete set of simulations for a single set of parameters


    If disE is not None it tries to run averaging over Gaussian energetic
    disorder.

    """
    if dname is None:
        dname = "sim_" + vib_loc

    use_trimer = trimer["useit"]
    rate_sp = trimer["rate"]

    #
    #  PARAMETERS FROM INPUT FILE
    #
    dip1 = INP.dip1  # [1.5, 0.0, 0.0]
    dip2 = INP.dip2  # [-1.0, -1.0, 0.0]
    width = INP.feature_width  # 100.0
    width2 = INP.feature_width2

    normalize_maps_to_maximu = False
    trim_maps = False

    units = "1/cm"
    with qr.energy_units(units):

        data_descr = "_dO="+str(dE)+"_omega="+str(omega)+ \
                     "_HR="+str(HR)+"_J="+str(JJ)

        if use_vib:
            sys_char = "_vib"
        else:
            sys_char = "_ele"
        data_ext = sys_char + ".png"
        obj_ext = sys_char + ".qrp"

    # parameters of the SP
    if use_trimer:
        E2 = trimer["E2"]
        epsa = (E0 + E2) / 2.0
        DE = trimer["DE"]
        J2 = 0.5 * numpy.sqrt(((E0 - E2)**2) - (DE**2))
        ESP2 = epsa + DE / 2.0
        ESP1 = epsa - DE / 2.0

    #
    #   Model system is a dimer of molecules
    #
    with qr.energy_units("1/cm"):

        if not use_trimer:

            if disE is not None:
                mol1 = qr.Molecule([0.0, E0 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 energy:", E0 + disE[0], "1/cm")
                print("Monomer 2 energy:", E0 + dE + disE[1], "1/cm")
            else:
                mol1 = qr.Molecule([0.0, E0])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 energy:", E0, "1/cm")
                print("Monomer 2 energy:", E0 + dE, "1/cm")
        else:

            if disE is not None:
                mol1 = qr.Molecule([0.0, ESP2 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 (SP_high) energy:", ESP2 + disE[0], "1/cm")
                print("Monomer 2 (B) energy:", E0 + dE + disE[1], "1/cm")
            else:
                mol1 = qr.Molecule([0.0, ESP2])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 (SP_high) energy:", ESP2, "1/cm")
                print("Monomer 2 (B) energy:", E0 + dE, "1/cm")
            if disE is not None:
                mol3 = qr.Molecule([0.0, ESP1 + disE[2]])
                print("Monomer 3 (SP_low) energy:", ESP1 + disE[2], "1/cm")
            else:
                mol3 = qr.Molecule([0.0, ESP1])
                print("Monomer 3 (SP_low) energy:", ESP1, "1/cm")
            mol3.set_transition_width((0, 1), width2)
            mol3.set_dipole(0, 1, trimer["dipsp"])

        mol1.set_transition_width((0, 1), width2)
        mol1.set_dipole(0, 1, dip1)

        mol2.set_transition_width((0, 1), width)
        mol2.set_dipole(0, 1, dip2)

    if use_trimer:
        agg = qr.Aggregate([mol1, mol2, mol3])
    else:
        agg = qr.Aggregate([mol1, mol2])

    if use_trimer:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)
            print("B - SP_high coupling:", JJ, "1/cm")
            agg.set_resonance_coupling(0, 2, J2)
            print("SP coupling:", J2, "1/cm")

    else:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)

    #
    # Electronic only aggregate
    #
    agg_el = agg.deepcopy()

    #
    # if nuclear vibrations are to be added, do it here
    #
    if use_vib:

        with qr.energy_units("1/cm"):
            mod1 = qr.Mode(omega)
            mod2 = qr.Mode(omega)

        if vib_loc == "down":
            set_vib = [True, False]
        elif vib_loc == "up":
            set_vib = [False, True]
        elif vib_loc == "both":
            set_vib = [True, True]
        else:
            raise Exception("Unknown location of the vibrations")

        if set_vib[0]:
            print("Vibrations set for SP_high molecule")
            mol1.add_Mode(mod1)
            mod1.set_nmax(0, INP.vibmode["no_g_vib"])
            mod1.set_nmax(1, INP.vibmode["no_e_vib"])
            mod1.set_HR(1, HR)

        if set_vib[1]:
            print("Vibrations set for B molecule")
            mol2.add_Mode(mod2)
            mod2.set_nmax(0, INP.vibmode["no_g_vib"])
            mod2.set_nmax(1, INP.vibmode["no_e_vib"])
            mod2.set_HR(1, HR)

    #
    # Before we build the aggregate, we make its copy to have an unbuilt version
    #
    agg3 = agg.deepcopy()
    aggA = agg.deepcopy()

    #
    # here we build the complete aggregate and its electronic only version
    #
    agg.build(mult=1)
    agg_el.build(mult=1)
    aggA.build(mult=1)

    # total Hamiltonian
    HH = agg.get_Hamiltonian()
    # electronic Hamiltonian
    He = agg_el.get_Hamiltonian()

    #
    # Laboratory setup
    #
    lab = qr.LabSetup()
    lab.set_polarizations(pulse_polarizations=[X, X, X],
                          detection_polarization=X)

    #
    # Time axis for the calculation of excited state evolution
    #
    t2_N_steps = INP.t2_N_steps
    t2_time_step = INP.t2_time_step
    time2 = qr.TimeAxis(0.0, t2_N_steps, t2_time_step)

    #
    # Containers for 2D maps with positive and negative frequencies
    #
    cont_p = qr.TwoDResponseContainer(t2axis=time2)
    cont_m = qr.TwoDResponseContainer(t2axis=time2)
    cont_tot = qr.TwoDResponseContainer(t2axis=time2)

    #
    # spectra will be indexed by the times in the time axis `time2`
    #
    cont_p.use_indexing_type(time2)
    cont_m.use_indexing_type(time2)
    cont_tot.use_indexing_type(time2)

    #
    # We define two-time axes, which will be FFTed and will define
    # the omega_1 and omega_3 axes of the 2D spectrum
    #
    t1_N_steps = INP.t1_N_steps
    t1_time_step = INP.t1_time_step
    t3_N_steps = INP.t3_N_steps
    t3_time_step = INP.t3_time_step
    t1axis = qr.TimeAxis(0.0, t1_N_steps, t1_time_step)
    t3axis = qr.TimeAxis(0.0, t3_N_steps, t3_time_step)

    #
    # This calculator calculated 2D spectra from the effective width
    #
    msc = qr.MockTwoDResponseCalculator(t1axis, time2, t3axis)
    with qr.energy_units("1/cm"):
        msc.bootstrap(rwa=E0, shape="Gaussian")

    #
    # System-bath interaction including vibrational states
    #
    operators = []
    rates = []

    print("Relaxation rates: ", rate, rate_sp, "1/fs")

    with qr.eigenbasis_of(He):

        if use_trimer:
            if He.data[3, 3] < He.data[2, 2]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(2, 3, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("2 <- 3 : energies = ", He.data[2, 2], He.data[3, 3],
                      "1/cm")
            rates.append(rate)
            print("Transfer time 2 <- 3:", 1.0 / rate, "fs")

            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2],
                      "1/cm")
            rates.append(rate_sp)
            print("Transfer time 1 <- 2", 1.0 / rate_sp, "fs")

        else:

            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2],
                      "1/cm")
            rates.append(rate_sp)
            print("Transfer time 1 <- 2", 1.0 / rate, "fs")

    # include detailed balace
    if detailed_balance:
        if use_trimer:
            with qr.eigenbasis_of(He):
                T = temperature  #77.0
                Den = (He.data[3, 3] - He.data[2, 2]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(3, 2, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
                rates.append(rate * thermal_fac)
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
                rates.append(rate_sp * thermal_fac)

        else:

            with qr.eigenbasis_of(He):
                T = temperature  #77.0
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)

    sbi = qr.qm.SystemBathInteraction(sys_operators=operators, rates=rates)
    sbi.set_system(agg)

    #
    # Lindblad form for relaxation
    #
    LF = qr.qm.ElectronicLindbladForm(HH, sbi, as_operators=True)

    #
    # Pure dephasing
    #
    p_deph = qr.qm.ElectronicPureDephasing(agg, dtype="Gaussian")

    # we simplify calculations by converting dephasing to
    # corresponding Lorentzian form
    p_deph.convert_to("Lorentzian")

    eUt = qr.qm.EvolutionSuperOperator(time2,
                                       HH,
                                       relt=LF,
                                       pdeph=p_deph,
                                       mode="all")
    eUt.set_dense_dt(INP.fine_splitting)

    print("---")

    #
    # We calculate evolution superoperator
    #
    eUt.calculate(show_progress=False)

    # save the evolution operator
    if save_eUt:
        eut_name = os.path.join(
            dname, "eUt" + "_omega2=" + str(omega) + data_descr + obj_ext)
        eUt.save(eut_name)

    #
    # Prepare aggregate with all states (including 2-EX band)
    #
    agg3.build(mult=2)
    agg3.diagonalize()

    agg_el.diagonalize()
    print("")
    print("Square of the transition dipoles")
    print(agg_el.D2)
    print("")
    print("---")

    #
    # calculation of absorption spectrum
    #
    time1 = qr.TimeAxis(0.0, 1000, 5.0)
    absc = qr.MockAbsSpectrumCalculator(time1, system=aggA)
    with qr.energy_units("1/cm"):
        absc.bootstrap(rwa=E0)

    spctrm = absc.calculate()
    spctrm.normalize2()

    with qr.energy_units("1/cm"):
        spctrm.plot(show=False, axis=[10500.0, 13500.0, 0.0, 1.1])
        spctrm.savefig(os.path.join(dname, "abs.png"))
        spctrm.save_data(os.path.join(dname, "abs.dat"))

    pways = dict()

    olow_cm = omega - INP.omega_uncertainty / 2.0
    ohigh_cm = omega + INP.omega_uncertainty / 2.0
    olow = qr.convert(olow_cm, "1/cm", "int")
    ohigh = qr.convert(ohigh_cm, "1/cm", "int")

    for t2 in time2.data:

        # this could save some memory of pathways become too big
        pways = dict()

        print("T2 =", t2, "fs (of T2_max =", time2.max, "fs)")

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [olow, ohigh]]])
        pws = pways[str(t2)]
        npa = len(pws)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_p.set_spectrum(twod)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [-ohigh,
                                                               -olow]]])

        pws = pways[str(t2)]
        npa = len(pws)
        #print(" m:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        #print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(-omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_m.set_spectrum(twod)

        # calculation without pre-selecting pathways
        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12)

        cont_tot.set_spectrum(twod)

    # saving total spectrum to a directory for further analysis
    try:
        saveit = INP.total_spectrum["save_it"]
    except:
        saveit = False

    if saveit:
        try:
            dform = INP.total_spectrum["data_format"]
        except:
            dform = "dat"
        try:
            stp = INP.total_spectrum["spectra_type"]
            if stp == "TOTL":
                stype = qr.signal_TOTL
            elif stp == "REPH":
                stype = qr.signal_REPH
            elif stp == "NONR":
                stype = qr.signal_NONR
            else:
                raise Exception("Wrong signal type")
        except:
            stype = qr.signal_REPH

        save_spectra(cont_tot, ext=dform, dir=dname, stype=stype)

    #
    # Save aggregate when a single calculation is done
    #
    if save_eUt:
        fname = os.path.join(dname, "aggregate.qrp")
        agg3.save(fname)

    #
    # Window function for subsequenty FFT
    #
    window = func.Tukey(time2, r=INP.tukey_window_r, sym=False)

    #
    # FFT with the window function
    #
    # Specify REPH, NONR or `total` to get different types of spectra
    #
    print("Calculating FFT of the 2D maps")
    #fcont = cont.fft(window=window, dtype=stype) #, dpart="real", offset=0.0)

    fcont_p_re = cont_p.fft(window=window, dtype=qr.signal_REPH)
    fcont_p_nr = cont_p.fft(window=window, dtype=qr.signal_NONR)
    fcont_p_to = cont_p.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_p_re.normalize2(dpart=qr.part_ABS)
        fcont_p_nr.normalize2(dpart=qr.part_ABS)
        fcont_p_to.normalize2(dpart=qr.part_ABS)

    fcont_m_re = cont_m.fft(window=window, dtype=qr.signal_REPH)
    fcont_m_nr = cont_m.fft(window=window, dtype=qr.signal_NONR)
    fcont_m_to = cont_m.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_m_re.normalize2(dpart=qr.part_ABS)
        fcont_m_nr.normalize2(dpart=qr.part_ABS)
        fcont_m_to.normalize2(dpart=qr.part_ABS)

    if trim_maps:
        twin = INP.trim_maps_to
        with qr.energy_units("1/cm"):
            fcont_p_re.trimall_to(window=twin)
            fcont_p_nr.trimall_to(window=twin)
            fcont_p_to.trimall_to(window=twin)

    show_omega = omega

    with qr.frequency_units("1/cm"):
        sp1_p_re, show_Npoint1 = fcont_p_re.get_nearest(show_omega)
        sp2_p_re, show_Npoint2 = fcont_p_re.get_nearest(-show_omega)
        sp1_p_nr, show_Npoint1 = fcont_p_nr.get_nearest(show_omega)
        sp2_p_nr, show_Npoint2 = fcont_p_nr.get_nearest(-show_omega)
        sp1_p_to, show_Npoint1 = fcont_p_to.get_nearest(show_omega)
        sp2_p_to, show_Npoint2 = fcont_p_to.get_nearest(-show_omega)
        sp1_m_re, show_Npoint1 = fcont_m_re.get_nearest(show_omega)
        sp2_m_re, show_Npoint2 = fcont_m_re.get_nearest(-show_omega)
        sp1_m_nr, show_Npoint1 = fcont_m_nr.get_nearest(show_omega)
        sp2_m_nr, show_Npoint2 = fcont_m_nr.get_nearest(-show_omega)
        sp1_m_to, show_Npoint1 = fcont_m_to.get_nearest(show_omega)
        sp2_m_to, show_Npoint2 = fcont_m_to.get_nearest(-show_omega)

    sstm = platform.system()
    #print(sstm)
    if sstm != "Windows":
        import resource
        memo = resource.getrusage(
            resource.RUSAGE_SELF).ru_maxrss / (1024 * 1024)
        print("Memory usage: ", memo, "in MB")

    return (sp1_p_re, sp1_p_nr, sp2_m_re, sp2_m_nr)
コード例 #7
0
ファイル: ex_850_vibrons.py プロジェクト: gharib85/quantarhei
# transition width
width = 80

E2 = E1 + Edelta
print("")
print("Molecular dimer")
print("E1:", E1, "1/cm")
print("E2:", E2, "1/cm (delta =", Edelta, ")")

with qr.energy_units("1/cm"):
    mol1 = qr.Molecule([0.0, E1])
    mol1.set_dipole(0, 1, [1.0, 0.0, 0.0])
    mol1.set_transition_width((0, 1), width)

    mod = qr.Mode(omega)
    mol1.add_Mode(mod)
    mod.set_nmax(0, 2)
    mod.set_nmax(1, 2)
    mod.set_HR(1, HR)

    mol2 = qr.Molecule([0.0, E2])
    mol2.set_dipole(0, 1, numpy.array([1.0, 1.0, 0.0]) / numpy.sqrt(2.0))
    mol2.set_transition_width((0, 1), width)

    agg = qr.Aggregate(molecules=[mol1, mol2])
    agg.set_resonance_coupling(0, 1, JJ)

agg.build(mult=2)
agg.diagonalize()
コード例 #8
0
ファイル: model_vib.py プロジェクト: xuanleng/quantarhei
include_second_B = False
vib_at_second_B = False

if include_second_B:
    BM = frac.get_Molecule_by_name("BM")

# In[29]:

#
# Here we add vibrational modes
#

omega_B = 572
omega_P = 572  #572
with qr.energy_units("1/cm"):
    mod_PM = qr.Mode(omega_P)
    mod_PL = qr.Mode(omega_P)
    mod_BM = qr.Mode(omega_B)
    mod_BL = qr.Mode(omega_B)

Nmax_e = 1
Nmax_g = 1

HRF = 0.0111
vib_P = False
vib_B = True

if vib_P:
    PM.add_Mode(mod_PM)
    mod_PM.set_nmax(0, Nmax_g)
    mod_PM.set_nmax(1, Nmax_e)
コード例 #9
0
    def test_LindbladWithVibrations_dynamics_comp(self):
        """Compares Lindblad dynamics of a system with vibrations calculated from propagator and superoperator
        
        
        
        """
        # Aggregate
        import quantarhei as qr

        time = qr.TimeAxis(0.0, 1000, 1.0)

        # create a model
        with qr.energy_units("1/cm"):

            me1 = qr.Molecule([0.0, 12100.0])
            me2 = qr.Molecule([0.0, 12000.0])
            me3 = qr.Molecule([0.0, 12900.0])

            agg_el = qr.Aggregate([me1, me2, me3])

            agg_el.set_resonance_coupling(0, 1,
                                          qr.convert(150, "1/cm", to="int"))
            agg_el.set_resonance_coupling(1, 2, qr.convert(50,
                                                           "1/cm",
                                                           to="int"))

            m1 = qr.Molecule([0.0, 12100.0])
            m2 = qr.Molecule([0.0, 12000.0])
            m3 = qr.Molecule([0.0, 12900.0])

            mod1 = qr.Mode(frequency=qr.convert(100, "1/cm", "int"))
            m1.add_Mode(mod1)
            mod1.set_HR(1, 0.01)

            agg = qr.Aggregate([m1, m2, m3])

            agg.set_resonance_coupling(0, 1, qr.convert(150, "1/cm", to="int"))
            agg.set_resonance_coupling(1, 2, qr.convert(50, "1/cm", to="int"))

        agg_el.build()
        agg.build()

        hame = agg_el.get_Hamiltonian()
        ham = agg.get_Hamiltonian()

        # calculate relaxation tensor

        with qr.eigenbasis_of(hame):

            #
            # Operator describing relaxation
            #

            K = qr.qm.ProjectionOperator(1, 2, dim=hame.dim)

            #
            # System bath interaction with prescribed rate
            #
            from quantarhei.qm import SystemBathInteraction

            sbi = SystemBathInteraction(sys_operators=[K],
                                        rates=(1.0 / 100.0, ))
            sbi.set_system(agg)  #agg.set_SystemBathInteraction(sbi)

        with qr.eigenbasis_of(ham):

            #
            # Corresponding Lindblad form
            #
            from quantarhei.qm import ElectronicLindbladForm

            LF = ElectronicLindbladForm(ham, sbi, as_operators=True)

            #
            # Evolution of reduced density matrix
            #
            prop = qr.ReducedDensityMatrixPropagator(time, ham, LF)

            #
            # Evolution by superoperator
            #

            eSO = qr.qm.EvolutionSuperOperator(time, ham, LF)
            eSO.set_dense_dt(5)
            eSO.calculate()

            # compare the two propagations
            pairs = [(5, 4), (5, 5), (6, 5), (7, 5)]
            for p in pairs:

                rho_i1 = qr.ReducedDensityMatrix(dim=ham.dim)
                rho_i1.data[p[0], p[1]] = 1.0

                rho_t1 = prop.propagate(rho_i1)

                exp_rho_t2 = eSO.data[:, :, :, p[0], p[1]]

                #import matplotlib.pyplot as plt

                #plt.plot(rho_t1.TimeAxis.data, numpy.real(rho_t1.data[:,p[0],p[1]]), "-r")
                #plt.plot(rho_t1.TimeAxis.data, numpy.real(exp_rho_t2[:,p[0],p[1]]), "--g")
                #plt.show()

                #for kk in range(rho_t1.TimeAxis.length):
                #    print(kk, numpy.real(rho_t1.data[kk,p[0],p[1]]),numpy.real(exp_rho_t2[kk,p[0],p[1]]))

                #numpy.testing.assert_allclose(RRT.data, rtd)
                numpy.testing.assert_allclose(numpy.real(rho_t1.data[:, :, :]),
                                              numpy.real(exp_rho_t2[:, :, :]),
                                              rtol=5.0e-2,
                                              atol=1.0e-3)