コード例 #1
0
def main():

    with qr.energy_units("1/cm"):
        mol1 = qr.Molecule([0.0, 12000.0])
        mol2 = qr.Molecule([0.0, 12100.0])
        mol3 = qr.Molecule([0.0, 12100.0])

        agg = qr.Aggregate([mol1, mol2, mol3])

        m1 = qr.Mode(100)
        mol1.add_Mode(m1)

        m2 = qr.Mode(100)
        mol2.add_Mode(m2)

        m3 = qr.Mode(100)
        mol3.add_Mode(m3)

    agg.build(mult=1)

    print(agg.Ntot)
コード例 #2
0
ファイル: test_aggregates.py プロジェクト: malypav/quantarhei
    def test_add_Molecule(self):
        """(Aggregate) Testing add_Molecule() method
        
        """
        agg = TestAggregate(name="dimer-2-env")

        mol = qr.Molecule(elenergies=[0.0, 1.0])

        nmols1 = agg.nmono
        agg.add_Molecule(mol)
        nmols2 = agg.nmono

        self.assertEqual(nmols1 + 1, nmols2)
        self.assertEqual(len(agg.monomers), nmols2)
        self.assertLessEqual(len(agg.mnames), nmols2)
コード例 #3
0
def circularAgg(numMol, dipoleStrength):
    proteinDis = 8.7
    difference = 0.6
    r = 5
    while difference > 0.1:
        t = np.linspace(0, np.pi * 2, numMol + 1)
        x = r * np.cos(t)
        y = r * np.sin(t)
        circle = np.c_[x, y]

        artificialDis = math.sqrt(((circle[0][0] - circle[1][0])**2)\
            + ((circle[0][1] - circle[1][1])**2))
        difference = abs(artificialDis - proteinDis)

        if artificialDis > proteinDis:
            r = r - 0.1
        elif artificialDis < proteinDis:
            r = r + 0.1
    circle2 = np.delete(circle, numMol, 0)

    dipoles = np.empty([numMol, 2])
    mag = math.sqrt((circle[0][0]**2) + (circle[0][1]**2))
    for i in range(numMol):
        dipoles[i][0] = -circle2[i][1]
        dipoles[i][1] = circle2[i][0]
        dipoles[i][0] = dipoles[i][0] / mag
        dipoles[i][1] = dipoles[i][1] / mag
        dipoles[i][0] = dipoles[i][0] * dipoleStrength
        dipoles[i][1] = dipoles[i][1] * dipoleStrength

    print('positions\n', circle2)
    print('dipoles\n', dipoles)

    forAggregate = []
    for i in range(numMol):
        molName = qr.Molecule()
        molName.position = [circle2[i][0], circle2[i][1], 0.0]
        molName.set_dipole(0, 1, [dipoles[i][0], dipoles[i][1], 0.0])
        forAggregate.append(molName)

    print(
        '\nA list of molecules was generated. Positions are in a '
        'ring with ', proteinDis, ' Angstrom spacings. Dipoles are '
        'added running along the tangent of the ring. All in the '
        'same direction with ', dipoleStrength, ' dipoles (D)\n')

    #return circle2, dipoles
    return forAggregate
コード例 #4
0
    def get_molecules_circular(self, nM, dip = 5, dist = 8.7, dif = 0.6, verbose = True):

        self.dipole_strength = dip

        r = 5
        while dif > 0.1:
            t = np.linspace(0, np.pi * 2, nM+1)
            x = r * np.cos(t)
            y = r * np.sin(t)
            circle = np.c_[x, y]

            artificialDis = math.sqrt(((circle[0][0] - circle[1][0])**2)\
                + ((circle[0][1] - circle[1][1])**2))
            dif = abs(artificialDis-dist)

            if artificialDis > dist:
                r = r - 0.1
            elif artificialDis < dist:
                r = r + 0.1
        circle2 = np.delete(circle, nM, 0)

        dipoles = np.empty([nM,2])
        mag = math.sqrt((circle[0][0]**2) + (circle[0][1]**2))
        for i in range(nM):
            dipoles[i][0] = -circle2[i][1]
            dipoles[i][1] = circle2[i][0]
            dipoles[i][0] = dipoles[i][0] / mag
            dipoles[i][1] = dipoles[i][1] / mag
            dipoles[i][0] = dipoles[i][0] * self.dipole_strength
            dipoles[i][1] = dipoles[i][1] * self.dipole_strength

        forAggregate = []
        for i in range(nM):
            molName = qr.Molecule()
            molName.position = [circle2[i][0], circle2[i][1], 0.0]
            molName.set_dipole(0,1,[dipoles[i][0], dipoles[i][1], 0.0])
            forAggregate.append(molName)

        if verbose:
            print('\nA list of molecules was generated. Positions are in a '
                'ring with ', dist, ' Angstrom spacings. Dipoles are '
                'added running along the tangent of the ring. All in the '
                'same direction with ', self.dipole_strength, ' dipoles (D)\n')

        #self.positions = circle2
        #self.dipoles = dipoles
        self.mol_list = forAggregate
コード例 #5
0
ファイル: demo6_absorption.py プロジェクト: saayeh/quantarhei
    Absorption of a monomeric two-level molecule


"""
cfce_params1 = dict(ftype="OverdampedBrownian",
                    reorg=20.0,
                    cortime=100.0,
                    T=100,
                    matsubara=20)

en = 12000.0

e_units = qr.energy_units("1/cm")

with e_units:
    m = qr.Molecule("Molecule", [0.0, en])
    with qr.energy_units("1/cm"):
        cfce1 = qr.CorrelationFunction(ta, cfce_params1)

m.set_egcf((0, 1), cfce1)
m.set_dipole(0, 1, [0.0, 1.0, 0.0])

a1 = qr.AbsSpect(ta, m)

with qr.energy_units("1/cm"):
    a1.calculate(rwa=en)

HH = m.get_Hamiltonian()
with qr.frequency_units("1/cm"):
    print(HH)
    a1.plot(axis=[11500, 12500, 0, numpy.max(a1.data) * 1.1])
コード例 #6
0
# -*- coding: utf-8 -*-
import numpy
import quantarhei as qr

_show_plots_ = True
_save_2D_ = True
_use_disorder_ = True

E0 = 12000.0
with qr.energy_units("1/cm"):
    # two two-level molecules
    m1 = qr.Molecule([0.0, E0])

    # transitions will have Gaussian lineshape with a width specified here
    m1.set_transition_width((0, 1), 100.0)

# we create an aggregate from the two molecules
agg = qr.Aggregate(molecules=[m1])

# we set transition dipole moment orientations for the two molecules
m1.set_dipole(0, 1, [1.0, 0.8, 0.8])

# time axes of the propagation in t1 and t3 times
t2_axis = qr.TimeAxis(0.0, 100, 10.0)
t1_axis = qr.TimeAxis(0.0, 100, 10.0)
t3_axis = qr.TimeAxis(0.0, 100, 10.0)

from quantarhei.spectroscopy.mocktwodcalculator \
    import MockTwoDResponseCalculator as TwoDResponseCalculator

from quantarhei.spectroscopy import X
コード例 #7
0
# -*- coding: utf-8 -*-

import quantarhei as qr

en = [0.0, 1.0]

M = qr.Molecule("My first two-level molecule", en)

H = M.get_Hamiltonian()

print(H)
コード例 #8
0
# -*- coding: utf-8 -*-

#<remove>
_show_plots_ = False
#</remove>

import quantarhei as qr

en = [0.0, 1.0]

M = qr.Molecule(elenergies=en)

H = M.get_Hamiltonian()

print(H)

print("version = ", qr.Manager().version)
コード例 #9
0
fft_of = qr.signal_REPH  # qr.signal_NONR, qr.signal_TOTL

###############################################################################
#
#
#  MODEL DEFINITION
#
#
###############################################################################

#
# Create a two-level molecule with one intra-molecular harmonic mode
#
with qr.energy_units("1/cm"):
    mol = qr.Molecule(elenergies=[0.0, E1])
    mol.set_dipole(0, 1, [1.0, 0.0, 1.0])

    mod = qr.Mode(frequency=omega)

    mol.add_Mode(mod)

    mod.set_nmax(0, Ng)
    mod.set_nmax(1, Ne)

    mod.set_HR(1, hr_factor)

    mol.set_transition_width((0, 1), width)

#
# Create an aggregate
コード例 #10
0
def run(omega,
        HR,
        dE,
        JJ,
        rate,
        E0,
        vib_loc="up",
        use_vib=True,
        stype=qr.signal_REPH,
        make_movie=False,
        save_eUt=False,
        t2_save_pathways=[],
        dname=None,
        trimer=None,
        disE=None):
    """Runs a complete set of simulations for a single set of parameters


    If disE is not None it tries to run averaging over Gaussian energetic
    disorder.

    """
    if dname is None:
        dname = "sim_" + vib_loc

    use_trimer = trimer["useit"]

    rate_sp = trimer["rate"]

    #
    #  PARAMETERS FROM INPUT FILE
    #
    dip1 = INP.dip1  # [1.5, 0.0, 0.0]
    dip2 = INP.dip2  # [-1.0, -1.0, 0.0]
    width = INP.feature_width  # 100.0
    width2 = INP.feature_width2

    normalize_maps_to_maximu = False
    trim_maps = False

    units = "1/cm"
    with qr.energy_units(units):

        data_descr = "_dO=" + str(dE) + "_omega=" + str(omega) + "_HR=" + str(
            HR) + "_J=" + str(JJ)

        if use_vib:
            sys_char = "_vib"
        else:
            sys_char = "_ele"
        data_ext = sys_char + ".png"
        obj_ext = sys_char + ".qrp"

    # parameters of the SP
    if use_trimer:
        E2 = trimer["E2"]
        epsa = (E0 + E2) / 2.0
        DE = trimer["DE"]
        J2 = 0.5 * numpy.sqrt(((E0 - E2)**2) - (DE**2))
        ESP2 = epsa + DE / 2.0
        ESP1 = epsa - DE / 2.0

    #
    #   Model system is a dimer of molecules
    #
    with qr.energy_units("1/cm"):

        if not use_trimer:

            mol1 = qr.Molecule([0.0, E0])
            mol2 = qr.Molecule([0.0, E0 + dE])

            print("Monomer 1 energy:", E0)
            print("Monomer 2 energy:", E0 + dE)

        else:

            if disE is not None:
                mol1 = qr.Molecule([0.0, ESP2 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 (SP_high) energy:", ESP2 + disE[0])
                print("Monomer 2 (B) energy:", E0 + dE + disE[1])
            else:
                mol1 = qr.Molecule([0.0, ESP2])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 (SP_high) energy:", ESP2)
                print("Monomer 2 (B) energy:", E0 + dE)
            if disE is not None:
                mol3 = qr.Molecule([0.0, ESP1 + disE[2]])
                print("Monomer 3 (SP_low) energy:", ESP1 + disE[2])
            else:
                mol3 = qr.Molecule([0.0, ESP1])
                print("Monomer 3 (SP_low) energy:", ESP1)
            mol3.set_transition_width((0, 1), width2)
            mol3.set_dipole(0, 1, trimer["dipsp"])

        mol1.set_transition_width((0, 1), width2)
        mol1.set_dipole(0, 1, dip1)

        mol2.set_transition_width((0, 1), width)
        mol2.set_dipole(0, 1, dip2)

    if use_trimer:
        agg = qr.Aggregate([mol1, mol2, mol3])
    else:
        agg = qr.Aggregate([mol1, mol2])

    if use_trimer:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)
            print("B - SP_high coupling:", JJ)
            agg.set_resonance_coupling(0, 2, J2)
            print("SP coupling:", J2)

    else:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)

    #
    # Electronic only aggregate
    #
    agg_el = agg.deepcopy()

    #
    # if nuclear vibrations are to be added, do it here
    #
    if use_vib:

        with qr.energy_units("1/cm"):
            mod1 = qr.Mode(omega)
            mod2 = qr.Mode(omega)

        if vib_loc == "down":
            set_vib = [True, False]
        elif vib_loc == "up":
            set_vib = [False, True]
        elif vib_loc == "both":
            set_vib = [True, True]
        else:
            raise Exception("Unknown location of the vibrations")

        if set_vib[0]:
            print("Vibrations set for SP_high molecule")
            mol1.add_Mode(mod1)
            mod1.set_nmax(0, INP.no_g_vib)
            mod1.set_nmax(1, INP.no_e_vib)
            mod1.set_HR(1, HR)

        if set_vib[1]:
            print("Vibrations set for B molecule")
            mol2.add_Mode(mod2)
            mod2.set_nmax(0, INP.no_g_vib)
            mod2.set_nmax(1, INP.no_e_vib)
            mod2.set_HR(1, HR)

    agg3 = agg.deepcopy()

    agg.build(mult=1)
    agg_el.build(mult=1)

    HH = agg.get_Hamiltonian()
    He = agg_el.get_Hamiltonian()

    #
    # Laboratory setup
    #
    lab = qr.LabSetup()
    lab.set_polarizations(pulse_polarizations=[X, X, X],
                          detection_polarization=X)

    t2_N_steps = INP.t2_N_steps
    t2_time_step = INP.t2_time_step
    time2 = qr.TimeAxis(0.0, t2_N_steps, t2_time_step)

    cont_p = qr.TwoDResponseContainer(t2axis=time2)
    cont_m = qr.TwoDResponseContainer(t2axis=time2)
    #
    # spectra will be indexed by the times in the time axis `time2`
    #
    cont_p.use_indexing_type(time2)

    #
    # We define two-time axes, which will be FFTed and will define
    # the omega_1 and omega_3 axes of the 2D spectrum
    #
    t1_N_steps = INP.t1_N_steps
    t1_time_step = INP.t1_time_step
    t3_N_steps = INP.t3_N_steps
    t3_time_step = INP.t3_time_step
    t1axis = qr.TimeAxis(0.0, t1_N_steps, t1_time_step)
    t3axis = qr.TimeAxis(0.0, t3_N_steps, t3_time_step)

    #
    # This calculator calculated 2D spectra from the effective width
    #
    msc = qr.MockTwoDResponseCalculator(t1axis, time2, t3axis)
    with qr.energy_units("1/cm"):
        msc.bootstrap(rwa=E0, shape="Gaussian")

    #
    # System-bath interaction including vibrational states
    #
    operators = []
    rates = []

    if use_trimer:

        print("Relaxation rates: ", rate, rate_sp)

        with qr.eigenbasis_of(He):
            if He.data[3, 3] < He.data[2, 2]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(2, 3, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("2<-3", He.data[2, 2], He.data[3, 3])
            rates.append(rate)
            print("Transfer time B -> SP:", 1.0 / rate)
            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1<-2", He.data[1, 1], He.data[2, 2])
            rates.append(rate_sp)
            print("Transfer time P+ -> P-:", 1.0 / rate_sp)

        # include detailed balace
        if detailed_balance:
            with qr.eigenbasis_of(He):
                T = INP.temperature  #77.0
                Den = (He.data[3, 3] - He.data[2, 2]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(3, 2, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)
        else:
            with qr.eigenbasis_of(He):
                if He.data[2, 2] < He.data[1, 1]:
                    Exception("Electronic states not orderred!")
                operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            rates.append(rate)

        # include detailed balace
        if detailed_balance:
            with qr.eigenbasis_of(He):
                T = INP.temperature  #77.0
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)

    sbi = qr.qm.SystemBathInteraction(sys_operators=operators, rates=rates)
    sbi.set_system(agg)

    #
    # Liouville form for relaxation
    #
    LF = qr.qm.ElectronicLindbladForm(HH, sbi, as_operators=True)

    #
    # Pure dephasing
    #
    p_deph = qr.qm.ElectronicPureDephasing(agg, dtype="Gaussian")

    # we simplify calculations by converting dephasing to
    # corresponding Lorentzian form
    p_deph.convert_to("Lorentzian")

    eUt = qr.qm.EvolutionSuperOperator(time2,
                                       HH,
                                       relt=LF,
                                       pdeph=p_deph,
                                       mode="all")
    eUt.set_dense_dt(INP.fine_splitting)

    #
    # We calculate evolution superoperator
    #
    eUt.calculate(show_progress=False)

    # save the evolution operator
    if save_eUt:
        eut_name = os.path.join(
            dname, "eUt" + "_omega2=" + str(omega) + data_descr + obj_ext)
        eUt.save(eut_name)

    #
    # Prepare aggregate with all states (including 2-EX band)
    #
    agg3.build(mult=2)
    agg3.diagonalize()

    pways = dict()

    olow_cm = omega - INP.omega_uncertainty / 2.0
    ohigh_cm = omega + INP.omega_uncertainty / 2.0
    olow = qr.convert(olow_cm, "1/cm", "int")
    ohigh = qr.convert(ohigh_cm, "1/cm", "int")

    for t2 in time2.data:

        # this could save some memory of pathways become too big
        pways = dict()

        print("T2 =", t2)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [olow, ohigh]]])
        pws = pways[str(t2)]
        npa = len(pws)
        print(" p:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_p.set_spectrum(twod)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [-ohigh,
                                                               -olow]]])

        pws = pways[str(t2)]
        npa = len(pws)
        print(" m:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(-omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_m.set_spectrum(twod)

    if make_movie:
        with qr.energy_units("1/cm"):
            cont_p.make_movie("mov.mp4")

    #
    # Save aggregate when a single calculation is done
    #
    if save_eUt:
        fname = os.path.join(dname, "aggregate.qrp")
        agg3.save(fname)

    #
    # Window function for subsequenty FFT
    #
    window = func.Tukey(time2, r=INP.tukey_window_r, sym=False)

    #
    # FFT with the window function
    #
    # Specify REPH, NONR or `total` to get different types of spectra
    #
    print("Calculating FFT of the 2D maps")
    #fcont = cont.fft(window=window, dtype=stype) #, dpart="real", offset=0.0)

    fcont_p_re = cont_p.fft(window=window, dtype=qr.signal_REPH)
    fcont_p_nr = cont_p.fft(window=window, dtype=qr.signal_NONR)
    fcont_p_to = cont_p.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_p_re.normalize2(dpart=qr.part_ABS)
        fcont_p_nr.normalize2(dpart=qr.part_ABS)
        fcont_p_to.normalize2(dpart=qr.part_ABS)

    fcont_m_re = cont_m.fft(window=window, dtype=qr.signal_REPH)
    fcont_m_nr = cont_m.fft(window=window, dtype=qr.signal_NONR)
    fcont_m_to = cont_m.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_m_re.normalize2(dpart=qr.part_ABS)
        fcont_m_nr.normalize2(dpart=qr.part_ABS)
        fcont_m_to.normalize2(dpart=qr.part_ABS)

    if trim_maps:
        twin = INP.trim_maps_to
        with qr.energy_units("1/cm"):
            fcont_p_re.trimall_to(window=twin)
            fcont_p_nr.trimall_to(window=twin)
            fcont_p_to.trimall_to(window=twin)

    show_omega = omega

    with qr.frequency_units("1/cm"):
        sp1_p_re, show_Npoint1 = fcont_p_re.get_nearest(show_omega)
        sp2_p_re, show_Npoint2 = fcont_p_re.get_nearest(-show_omega)
        sp1_p_nr, show_Npoint1 = fcont_p_nr.get_nearest(show_omega)
        sp2_p_nr, show_Npoint2 = fcont_p_nr.get_nearest(-show_omega)
        sp1_p_to, show_Npoint1 = fcont_p_to.get_nearest(show_omega)
        sp2_p_to, show_Npoint2 = fcont_p_to.get_nearest(-show_omega)
        sp1_m_re, show_Npoint1 = fcont_m_re.get_nearest(show_omega)
        sp2_m_re, show_Npoint2 = fcont_m_re.get_nearest(-show_omega)
        sp1_m_nr, show_Npoint1 = fcont_m_nr.get_nearest(show_omega)
        sp2_m_nr, show_Npoint2 = fcont_m_nr.get_nearest(-show_omega)
        sp1_m_to, show_Npoint1 = fcont_m_to.get_nearest(show_omega)
        sp2_m_to, show_Npoint2 = fcont_m_to.get_nearest(-show_omega)

    with qr.energy_units(units):

        if show_plots:

            #
            # Spots to look at in detail
            #
            with qr.energy_units("1/cm"):
                with qr.eigenbasis_of(He):
                    Ep_l = He.data[1, 1]
                    Ep_u = He.data[2, 2]

            Ep = numpy.zeros((4, 2))
            Ep[0, 0] = Ep_l
            Ep[0, 1] = Ep_l
            Ep[1, 0] = Ep_l
            Ep[1, 1] = Ep_u
            Ep[2, 0] = Ep_u
            Ep[2, 1] = Ep_l
            Ep[3, 0] = Ep_u
            Ep[3, 1] = Ep_u

            print("\nPlotting and saving spectrum at frequency:",
                  fcont_p_re.axis.data[show_Npoint1], units)

            fftf_1 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=REPH" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_re.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Rephasing\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_re.savefig(fftf_1)
            print("... saved into: ", fftf_1)
            fftf_2 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=NONR" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_nr.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Non-rephasing\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_nr.savefig(fftf_2)
            print("... saved into: ", fftf_2)
            fftf_3 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=tot" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_to.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Total\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_to.savefig(fftf_3)
            print("... saved into: ", fftf_3)

            #
            # Point evolutions at the expected peak positions
            #

            for ii in range(4):
                points = fcont_p_re.get_point_evolution(
                    Ep[ii, 0], Ep[ii, 1], fcont_p_re.axis)
                points.apply_to_data(numpy.abs)
                if ii >= 3:
                    points.plot(show=True)
                else:
                    points.plot(show=False)

            print("\nPlotting and saving spectrum at frequency:",
                  fcont_m_re.axis.data[show_Npoint2], units)
            fftf_4 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=REPH" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_re.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Rephasing\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_re.savefig(fftf_4)
            print("... saved into: ", fftf_4)
            fftf_5 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=NONR" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_nr.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Non-rephasing\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_nr.savefig(fftf_5)
            print("... saved into: ", fftf_5)
            fftf_6 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=tot" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_to.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Total\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_to.savefig(fftf_6)
            print("... saved into: ", fftf_6)

            #
            # Point evolutions at the expected peak positions
            #
            for ii in range(4):
                points = fcont_p_re.get_point_evolution(
                    Ep[ii, 0], Ep[ii, 1], fcont_m_re.axis)
                points.apply_to_data(numpy.abs)
                if ii >= 3:
                    points.plot(show=True)
                else:
                    points.plot(show=False)

    save_containers = False

    if save_containers:
        fname = os.path.join(dname, "cont_p" + data_descr + obj_ext)
        print("Saving container into: " + fname)
        cont_p.save(fname)
        fname = os.path.join(dname, "cont_m" + data_descr + obj_ext)
        print("Saving container into: " + fname)
        cont_m.save(fname)

    import resource
    memo = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / (1024 * 1024)
    print("Memory usage: ", memo, "in MB")

    return (sp1_p_re, sp1_p_nr, sp2_m_re, sp2_m_nr)
コード例 #11
0
print("")
print("***********************************************************")
print("*                                                         *")
print("*          Quantarhei's HEOM implementation demo          *")
print("*                                                         *")
print("***********************************************************")
###############################################################################
#
#   Model system definition
#
###############################################################################

#   Three molecules
with qr.energy_units("1/cm"):
    m1 = qr.Molecule([0.0, 10100.0])
    m2 = qr.Molecule([0.0, 10300.0])
    m3 = qr.Molecule([0.0, 10000.0])

#   Aggregate is built from the molecules
agg = qr.Aggregate([m1, m2, m3])

#   Couplings between them are set
with qr.energy_units("1/cm"):
    agg.set_resonance_coupling(0, 1, 80.0)
    agg.set_resonance_coupling(0, 2, 100.0)

#   Interaction with the bath is set through bath correlation functions
timea = qr.TimeAxis(0.0, 500, 1.0)
cpar1 = dict(ftype="OverdampedBrownian-HighTemperature",
             reorg=50,
コード例 #12
0
import copy
import quantarhei as qr

_show_plots_ = True
_movie_ = False
_save_2D_ = True

###############################################################################
#
# MODEL: Simple dimer of molecules
#
###############################################################################

with qr.energy_units("1/cm"):
    # two two-level molecules
    m1 = qr.Molecule([0.0, 12000.0])
    m2 = qr.Molecule([0.0, 12300.0])

    # transitions will have Gaussian lineshape with a width specified here
    m1.set_transition_width((0, 1), 150.0)
    m2.set_transition_width((0, 1), 150.0)

# we create an aggregate from the two molecules
agg = qr.Aggregate(molecules=[m1, m2])

# we set transition dipole moment orientations for the two molecules
m1.set_dipole(0, 1, [1.0, 0.8, 0.8])
m2.set_dipole(0, 1, [0.8, 0.8, 0.0])

# resonance coupling is set by hand
with qr.energy_units("1/cm"):
コード例 #13
0
    h_shift = 0.0
    sc_H = 1.0
    sc_P = 1.0
else:
    offset = 275
    offset_P = 400  #485.0
    offset_P_M = offset_P + 100.0
    h_shift = 85.0
    sc_H = 0.79
    sc_P = 0.75

#
# Molecules
#
with qr.energy_units("1/cm"):
    PM = qr.Molecule([0.0, 11610.0 + offset_P_M], name="PM")
    PL = qr.Molecule([0.0, 11610.0 + offset_P], name="PL")
    BM = qr.Molecule([0.0, 12220.0 + offset], name="BM")
    BL = qr.Molecule([0.0, 12370.0 + offset], name="BL")
    HL = qr.Molecule([0.0, 13020.0 + offset - h_shift], name="HL")
    HM = qr.Molecule([0.0, 13150.0 + offset + h_shift], name="HM")

    # CT states are effectively represented as "new molecules" in the system
    PCT_M = qr.Molecule([0.0, 15200], name="PCT1")
    PCT_L = qr.Molecule([0.0, 13550], name="PCT2")  # 13500

#
# Transition dipole moment from Ref. 1 are scaled
#
dPM = numpy.array([0.8546, 0.5051, 0.1206]) * sc_P
dPL = numpy.array([-0.9649, -0.0250, 0.2613]) * sc_P
コード例 #14
0
def run(omega,
        HR,
        dE,
        JJ,
        rate,
        E0,
        vib_loc="up",
        use_vib=True,
        detailed_balance=False,
        temperature=77.0,
        stype=qr.signal_REPH,
        save_eUt=False,
        t2_save_pathways=[],
        dname=None,
        trimer=None,
        disE=None):
    """Runs a complete set of simulations for a single set of parameters


    If disE is not None it tries to run averaging over Gaussian energetic
    disorder.

    """
    if dname is None:
        dname = "sim_" + vib_loc

    use_trimer = trimer["useit"]
    rate_sp = trimer["rate"]

    #
    #  PARAMETERS FROM INPUT FILE
    #
    dip1 = INP.dip1  # [1.5, 0.0, 0.0]
    dip2 = INP.dip2  # [-1.0, -1.0, 0.0]
    width = INP.feature_width  # 100.0
    width2 = INP.feature_width2

    normalize_maps_to_maximu = False
    trim_maps = False

    units = "1/cm"
    with qr.energy_units(units):

        data_descr = "_dO="+str(dE)+"_omega="+str(omega)+ \
                     "_HR="+str(HR)+"_J="+str(JJ)

        if use_vib:
            sys_char = "_vib"
        else:
            sys_char = "_ele"
        data_ext = sys_char + ".png"
        obj_ext = sys_char + ".qrp"

    # parameters of the SP
    if use_trimer:
        E2 = trimer["E2"]
        epsa = (E0 + E2) / 2.0
        DE = trimer["DE"]
        J2 = 0.5 * numpy.sqrt(((E0 - E2)**2) - (DE**2))
        ESP2 = epsa + DE / 2.0
        ESP1 = epsa - DE / 2.0

    #
    #   Model system is a dimer of molecules
    #
    with qr.energy_units("1/cm"):

        if not use_trimer:

            if disE is not None:
                mol1 = qr.Molecule([0.0, E0 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 energy:", E0 + disE[0], "1/cm")
                print("Monomer 2 energy:", E0 + dE + disE[1], "1/cm")
            else:
                mol1 = qr.Molecule([0.0, E0])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 energy:", E0, "1/cm")
                print("Monomer 2 energy:", E0 + dE, "1/cm")
        else:

            if disE is not None:
                mol1 = qr.Molecule([0.0, ESP2 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 (SP_high) energy:", ESP2 + disE[0], "1/cm")
                print("Monomer 2 (B) energy:", E0 + dE + disE[1], "1/cm")
            else:
                mol1 = qr.Molecule([0.0, ESP2])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 (SP_high) energy:", ESP2, "1/cm")
                print("Monomer 2 (B) energy:", E0 + dE, "1/cm")
            if disE is not None:
                mol3 = qr.Molecule([0.0, ESP1 + disE[2]])
                print("Monomer 3 (SP_low) energy:", ESP1 + disE[2], "1/cm")
            else:
                mol3 = qr.Molecule([0.0, ESP1])
                print("Monomer 3 (SP_low) energy:", ESP1, "1/cm")
            mol3.set_transition_width((0, 1), width2)
            mol3.set_dipole(0, 1, trimer["dipsp"])

        mol1.set_transition_width((0, 1), width2)
        mol1.set_dipole(0, 1, dip1)

        mol2.set_transition_width((0, 1), width)
        mol2.set_dipole(0, 1, dip2)

    if use_trimer:
        agg = qr.Aggregate([mol1, mol2, mol3])
    else:
        agg = qr.Aggregate([mol1, mol2])

    if use_trimer:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)
            print("B - SP_high coupling:", JJ, "1/cm")
            agg.set_resonance_coupling(0, 2, J2)
            print("SP coupling:", J2, "1/cm")

    else:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)

    #
    # Electronic only aggregate
    #
    agg_el = agg.deepcopy()

    #
    # if nuclear vibrations are to be added, do it here
    #
    if use_vib:

        with qr.energy_units("1/cm"):
            mod1 = qr.Mode(omega)
            mod2 = qr.Mode(omega)

        if vib_loc == "down":
            set_vib = [True, False]
        elif vib_loc == "up":
            set_vib = [False, True]
        elif vib_loc == "both":
            set_vib = [True, True]
        else:
            raise Exception("Unknown location of the vibrations")

        if set_vib[0]:
            print("Vibrations set for SP_high molecule")
            mol1.add_Mode(mod1)
            mod1.set_nmax(0, INP.vibmode["no_g_vib"])
            mod1.set_nmax(1, INP.vibmode["no_e_vib"])
            mod1.set_HR(1, HR)

        if set_vib[1]:
            print("Vibrations set for B molecule")
            mol2.add_Mode(mod2)
            mod2.set_nmax(0, INP.vibmode["no_g_vib"])
            mod2.set_nmax(1, INP.vibmode["no_e_vib"])
            mod2.set_HR(1, HR)

    #
    # Before we build the aggregate, we make its copy to have an unbuilt version
    #
    agg3 = agg.deepcopy()
    aggA = agg.deepcopy()

    #
    # here we build the complete aggregate and its electronic only version
    #
    agg.build(mult=1)
    agg_el.build(mult=1)
    aggA.build(mult=1)

    # total Hamiltonian
    HH = agg.get_Hamiltonian()
    # electronic Hamiltonian
    He = agg_el.get_Hamiltonian()

    #
    # Laboratory setup
    #
    lab = qr.LabSetup()
    lab.set_polarizations(pulse_polarizations=[X, X, X],
                          detection_polarization=X)

    #
    # Time axis for the calculation of excited state evolution
    #
    t2_N_steps = INP.t2_N_steps
    t2_time_step = INP.t2_time_step
    time2 = qr.TimeAxis(0.0, t2_N_steps, t2_time_step)

    #
    # Containers for 2D maps with positive and negative frequencies
    #
    cont_p = qr.TwoDResponseContainer(t2axis=time2)
    cont_m = qr.TwoDResponseContainer(t2axis=time2)
    cont_tot = qr.TwoDResponseContainer(t2axis=time2)

    #
    # spectra will be indexed by the times in the time axis `time2`
    #
    cont_p.use_indexing_type(time2)
    cont_m.use_indexing_type(time2)
    cont_tot.use_indexing_type(time2)

    #
    # We define two-time axes, which will be FFTed and will define
    # the omega_1 and omega_3 axes of the 2D spectrum
    #
    t1_N_steps = INP.t1_N_steps
    t1_time_step = INP.t1_time_step
    t3_N_steps = INP.t3_N_steps
    t3_time_step = INP.t3_time_step
    t1axis = qr.TimeAxis(0.0, t1_N_steps, t1_time_step)
    t3axis = qr.TimeAxis(0.0, t3_N_steps, t3_time_step)

    #
    # This calculator calculated 2D spectra from the effective width
    #
    msc = qr.MockTwoDResponseCalculator(t1axis, time2, t3axis)
    with qr.energy_units("1/cm"):
        msc.bootstrap(rwa=E0, shape="Gaussian")

    #
    # System-bath interaction including vibrational states
    #
    operators = []
    rates = []

    print("Relaxation rates: ", rate, rate_sp, "1/fs")

    with qr.eigenbasis_of(He):

        if use_trimer:
            if He.data[3, 3] < He.data[2, 2]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(2, 3, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("2 <- 3 : energies = ", He.data[2, 2], He.data[3, 3],
                      "1/cm")
            rates.append(rate)
            print("Transfer time 2 <- 3:", 1.0 / rate, "fs")

            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2],
                      "1/cm")
            rates.append(rate_sp)
            print("Transfer time 1 <- 2", 1.0 / rate_sp, "fs")

        else:

            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2],
                      "1/cm")
            rates.append(rate_sp)
            print("Transfer time 1 <- 2", 1.0 / rate, "fs")

    # include detailed balace
    if detailed_balance:
        if use_trimer:
            with qr.eigenbasis_of(He):
                T = temperature  #77.0
                Den = (He.data[3, 3] - He.data[2, 2]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(3, 2, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
                rates.append(rate * thermal_fac)
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
                rates.append(rate_sp * thermal_fac)

        else:

            with qr.eigenbasis_of(He):
                T = temperature  #77.0
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)

    sbi = qr.qm.SystemBathInteraction(sys_operators=operators, rates=rates)
    sbi.set_system(agg)

    #
    # Lindblad form for relaxation
    #
    LF = qr.qm.ElectronicLindbladForm(HH, sbi, as_operators=True)

    #
    # Pure dephasing
    #
    p_deph = qr.qm.ElectronicPureDephasing(agg, dtype="Gaussian")

    # we simplify calculations by converting dephasing to
    # corresponding Lorentzian form
    p_deph.convert_to("Lorentzian")

    eUt = qr.qm.EvolutionSuperOperator(time2,
                                       HH,
                                       relt=LF,
                                       pdeph=p_deph,
                                       mode="all")
    eUt.set_dense_dt(INP.fine_splitting)

    print("---")

    #
    # We calculate evolution superoperator
    #
    eUt.calculate(show_progress=False)

    # save the evolution operator
    if save_eUt:
        eut_name = os.path.join(
            dname, "eUt" + "_omega2=" + str(omega) + data_descr + obj_ext)
        eUt.save(eut_name)

    #
    # Prepare aggregate with all states (including 2-EX band)
    #
    agg3.build(mult=2)
    agg3.diagonalize()

    agg_el.diagonalize()
    print("")
    print("Square of the transition dipoles")
    print(agg_el.D2)
    print("")
    print("---")

    #
    # calculation of absorption spectrum
    #
    time1 = qr.TimeAxis(0.0, 1000, 5.0)
    absc = qr.MockAbsSpectrumCalculator(time1, system=aggA)
    with qr.energy_units("1/cm"):
        absc.bootstrap(rwa=E0)

    spctrm = absc.calculate()
    spctrm.normalize2()

    with qr.energy_units("1/cm"):
        spctrm.plot(show=False, axis=[10500.0, 13500.0, 0.0, 1.1])
        spctrm.savefig(os.path.join(dname, "abs.png"))
        spctrm.save_data(os.path.join(dname, "abs.dat"))

    pways = dict()

    olow_cm = omega - INP.omega_uncertainty / 2.0
    ohigh_cm = omega + INP.omega_uncertainty / 2.0
    olow = qr.convert(olow_cm, "1/cm", "int")
    ohigh = qr.convert(ohigh_cm, "1/cm", "int")

    for t2 in time2.data:

        # this could save some memory of pathways become too big
        pways = dict()

        print("T2 =", t2, "fs (of T2_max =", time2.max, "fs)")

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [olow, ohigh]]])
        pws = pways[str(t2)]
        npa = len(pws)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_p.set_spectrum(twod)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [-ohigh,
                                                               -olow]]])

        pws = pways[str(t2)]
        npa = len(pws)
        #print(" m:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        #print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(-omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_m.set_spectrum(twod)

        # calculation without pre-selecting pathways
        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12)

        cont_tot.set_spectrum(twod)

    # saving total spectrum to a directory for further analysis
    try:
        saveit = INP.total_spectrum["save_it"]
    except:
        saveit = False

    if saveit:
        try:
            dform = INP.total_spectrum["data_format"]
        except:
            dform = "dat"
        try:
            stp = INP.total_spectrum["spectra_type"]
            if stp == "TOTL":
                stype = qr.signal_TOTL
            elif stp == "REPH":
                stype = qr.signal_REPH
            elif stp == "NONR":
                stype = qr.signal_NONR
            else:
                raise Exception("Wrong signal type")
        except:
            stype = qr.signal_REPH

        save_spectra(cont_tot, ext=dform, dir=dname, stype=stype)

    #
    # Save aggregate when a single calculation is done
    #
    if save_eUt:
        fname = os.path.join(dname, "aggregate.qrp")
        agg3.save(fname)

    #
    # Window function for subsequenty FFT
    #
    window = func.Tukey(time2, r=INP.tukey_window_r, sym=False)

    #
    # FFT with the window function
    #
    # Specify REPH, NONR or `total` to get different types of spectra
    #
    print("Calculating FFT of the 2D maps")
    #fcont = cont.fft(window=window, dtype=stype) #, dpart="real", offset=0.0)

    fcont_p_re = cont_p.fft(window=window, dtype=qr.signal_REPH)
    fcont_p_nr = cont_p.fft(window=window, dtype=qr.signal_NONR)
    fcont_p_to = cont_p.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_p_re.normalize2(dpart=qr.part_ABS)
        fcont_p_nr.normalize2(dpart=qr.part_ABS)
        fcont_p_to.normalize2(dpart=qr.part_ABS)

    fcont_m_re = cont_m.fft(window=window, dtype=qr.signal_REPH)
    fcont_m_nr = cont_m.fft(window=window, dtype=qr.signal_NONR)
    fcont_m_to = cont_m.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_m_re.normalize2(dpart=qr.part_ABS)
        fcont_m_nr.normalize2(dpart=qr.part_ABS)
        fcont_m_to.normalize2(dpart=qr.part_ABS)

    if trim_maps:
        twin = INP.trim_maps_to
        with qr.energy_units("1/cm"):
            fcont_p_re.trimall_to(window=twin)
            fcont_p_nr.trimall_to(window=twin)
            fcont_p_to.trimall_to(window=twin)

    show_omega = omega

    with qr.frequency_units("1/cm"):
        sp1_p_re, show_Npoint1 = fcont_p_re.get_nearest(show_omega)
        sp2_p_re, show_Npoint2 = fcont_p_re.get_nearest(-show_omega)
        sp1_p_nr, show_Npoint1 = fcont_p_nr.get_nearest(show_omega)
        sp2_p_nr, show_Npoint2 = fcont_p_nr.get_nearest(-show_omega)
        sp1_p_to, show_Npoint1 = fcont_p_to.get_nearest(show_omega)
        sp2_p_to, show_Npoint2 = fcont_p_to.get_nearest(-show_omega)
        sp1_m_re, show_Npoint1 = fcont_m_re.get_nearest(show_omega)
        sp2_m_re, show_Npoint2 = fcont_m_re.get_nearest(-show_omega)
        sp1_m_nr, show_Npoint1 = fcont_m_nr.get_nearest(show_omega)
        sp2_m_nr, show_Npoint2 = fcont_m_nr.get_nearest(-show_omega)
        sp1_m_to, show_Npoint1 = fcont_m_to.get_nearest(show_omega)
        sp2_m_to, show_Npoint2 = fcont_m_to.get_nearest(-show_omega)

    sstm = platform.system()
    #print(sstm)
    if sstm != "Windows":
        import resource
        memo = resource.getrusage(
            resource.RUSAGE_SELF).ru_maxrss / (1024 * 1024)
        print("Memory usage: ", memo, "in MB")

    return (sp1_p_re, sp1_p_nr, sp2_m_re, sp2_m_nr)
コード例 #15
0
ファイル: demo_2D_dimer.py プロジェクト: gharib85/quantarhei
###############################################################################
#
# Define problem
#
###############################################################################

#
# define molecules
#
Nmol = 5
Emol = 12500.0
mols = []
with qr.energy_units("1/cm"):
    for ii in range(Nmol):
        mol = qr.Molecule(elenergies=[0.0, Emol+20.0*numpy.random.randn()]) #
        mols.append(mol)
        
#    mol1 = Molecule(elenergies=[0.0, 12550.0])
#    mol2 = Molecule(elenergies=[0.0, 12150.0])
#    mol3 = Molecule(elenergies=[0.0, 12350.0])
#mol1.position = [0.0, 0.0, 0.0]
## dimer 1
#mol2.position = [0.0, 4.0, 0.0]
### dimer 2
##mol2.position = [0.0, 0.0, 6.0]
#mol1.set_dipole(0,1,[2.0, 0.0, 0.0])
#mol2.set_dipole(0,1,[2.0*numpy.sqrt(1.0/2.0), 2.0*numpy.sqrt(1.0/2.0), 0.0])
#mol3.set_dipole(0,1,[0.0, 2.0, 0.0])

for ii in range(Nmol):
コード例 #16
0
ファイル: ex_850_vibrons.py プロジェクト: gharib85/quantarhei
# frequency of the vibrational mode
omega = 110.0
# Huan-Rhys factor
HR = 0.01

# transition width
width = 80

E2 = E1 + Edelta
print("")
print("Molecular dimer")
print("E1:", E1, "1/cm")
print("E2:", E2, "1/cm (delta =", Edelta, ")")

with qr.energy_units("1/cm"):
    mol1 = qr.Molecule([0.0, E1])
    mol1.set_dipole(0, 1, [1.0, 0.0, 0.0])
    mol1.set_transition_width((0, 1), width)

    mod = qr.Mode(omega)
    mol1.add_Mode(mod)
    mod.set_nmax(0, 2)
    mod.set_nmax(1, 2)
    mod.set_HR(1, HR)

    mol2 = qr.Molecule([0.0, E2])
    mol2.set_dipole(0, 1, numpy.array([1.0, 1.0, 0.0]) / numpy.sqrt(2.0))
    mol2.set_transition_width((0, 1), width)

    agg = qr.Aggregate(molecules=[mol1, mol2])
    agg.set_resonance_coupling(0, 1, JJ)
コード例 #17
0
# -*- coding: utf-8 -*-

#<remove>
_show_plots_ = False
#</remove>

import quantarhei as qr

en = [0.0, 1.0]
m1 = qr.Molecule(name="Mol1", elenergies=en)
m2 = qr.Molecule(name="Mol2", elenergies=en)

ag = qr.Aggregate(name="Homodimer")
ag.add_Molecule(m1)
ag.add_Molecule(m2)

ag.set_resonance_coupling(0, 1, 0.1)

ag.build(mult=1)

H = ag.get_Hamiltonian()

#with qr.energy_units("1/cm"):
#    print(H)

#
# Here we test generation of states with 3 level molecules
#

en = [0.0, 10100.0]  #, 20200.0]
with qr.energy_units("1/cm"):
コード例 #18
0
# -*- coding: utf-8 -*-
_show_plots_ = False
import numpy

import quantarhei as qr

qr.Manager().gen_conf.legacy_relaxation = True

print("Preparing a model system:")

with qr.energy_units("1/cm"):
    mol1 = qr.Molecule([0.0, 12010])
    mol2 = qr.Molecule([0.0, 12000])
    mol3 = qr.Molecule([0.0, 12100])
    mol4 = qr.Molecule([0.0, 12110])

agg = qr.Aggregate([mol1, mol2, mol3, mol4])
agg.set_resonance_coupling(2, 3, qr.convert(100.0, "1/cm", "int"))
agg.set_resonance_coupling(1, 3, qr.convert(100.0, "1/cm", "int"))
agg.set_resonance_coupling(1, 2, qr.convert(0.0, "1/cm", "int"))

qr.save_parcel(agg, "agg.qrp")
agg2 = qr.load_parcel("agg.qrp")
agg2.build()

H = agg2.get_Hamiltonian()

print("...done")

print("Setting up Lindblad form relaxation:")
Ndim = 5
コード例 #19
0
    def test_LindbladWithVibrations_dynamics_comp(self):
        """Compares Lindblad dynamics of a system with vibrations calculated from propagator and superoperator
        
        
        
        """
        # Aggregate
        import quantarhei as qr

        time = qr.TimeAxis(0.0, 1000, 1.0)

        # create a model
        with qr.energy_units("1/cm"):

            me1 = qr.Molecule([0.0, 12100.0])
            me2 = qr.Molecule([0.0, 12000.0])
            me3 = qr.Molecule([0.0, 12900.0])

            agg_el = qr.Aggregate([me1, me2, me3])

            agg_el.set_resonance_coupling(0, 1,
                                          qr.convert(150, "1/cm", to="int"))
            agg_el.set_resonance_coupling(1, 2, qr.convert(50,
                                                           "1/cm",
                                                           to="int"))

            m1 = qr.Molecule([0.0, 12100.0])
            m2 = qr.Molecule([0.0, 12000.0])
            m3 = qr.Molecule([0.0, 12900.0])

            mod1 = qr.Mode(frequency=qr.convert(100, "1/cm", "int"))
            m1.add_Mode(mod1)
            mod1.set_HR(1, 0.01)

            agg = qr.Aggregate([m1, m2, m3])

            agg.set_resonance_coupling(0, 1, qr.convert(150, "1/cm", to="int"))
            agg.set_resonance_coupling(1, 2, qr.convert(50, "1/cm", to="int"))

        agg_el.build()
        agg.build()

        hame = agg_el.get_Hamiltonian()
        ham = agg.get_Hamiltonian()

        # calculate relaxation tensor

        with qr.eigenbasis_of(hame):

            #
            # Operator describing relaxation
            #

            K = qr.qm.ProjectionOperator(1, 2, dim=hame.dim)

            #
            # System bath interaction with prescribed rate
            #
            from quantarhei.qm import SystemBathInteraction

            sbi = SystemBathInteraction(sys_operators=[K],
                                        rates=(1.0 / 100.0, ))
            sbi.set_system(agg)  #agg.set_SystemBathInteraction(sbi)

        with qr.eigenbasis_of(ham):

            #
            # Corresponding Lindblad form
            #
            from quantarhei.qm import ElectronicLindbladForm

            LF = ElectronicLindbladForm(ham, sbi, as_operators=True)

            #
            # Evolution of reduced density matrix
            #
            prop = qr.ReducedDensityMatrixPropagator(time, ham, LF)

            #
            # Evolution by superoperator
            #

            eSO = qr.qm.EvolutionSuperOperator(time, ham, LF)
            eSO.set_dense_dt(5)
            eSO.calculate()

            # compare the two propagations
            pairs = [(5, 4), (5, 5), (6, 5), (7, 5)]
            for p in pairs:

                rho_i1 = qr.ReducedDensityMatrix(dim=ham.dim)
                rho_i1.data[p[0], p[1]] = 1.0

                rho_t1 = prop.propagate(rho_i1)

                exp_rho_t2 = eSO.data[:, :, :, p[0], p[1]]

                #import matplotlib.pyplot as plt

                #plt.plot(rho_t1.TimeAxis.data, numpy.real(rho_t1.data[:,p[0],p[1]]), "-r")
                #plt.plot(rho_t1.TimeAxis.data, numpy.real(exp_rho_t2[:,p[0],p[1]]), "--g")
                #plt.show()

                #for kk in range(rho_t1.TimeAxis.length):
                #    print(kk, numpy.real(rho_t1.data[kk,p[0],p[1]]),numpy.real(exp_rho_t2[kk,p[0],p[1]]))

                #numpy.testing.assert_allclose(RRT.data, rtd)
                numpy.testing.assert_allclose(numpy.real(rho_t1.data[:, :, :]),
                                              numpy.real(exp_rho_t2[:, :, :]),
                                              rtol=5.0e-2,
                                              atol=1.0e-3)
コード例 #20
0
# Group of two-level molecules

ex_energies = numpy.zeros(N_molecules)
ex_energies[:] = 12000.0
mols = []
previous_position = numpy.zeros(3, dtype=qr.REAL)
dist_max = 10.0
dist_min = 5.0
placed_molecules = []
dipole_length = 6.0

with qr.energy_units("1/cm"):
    qr.log_report("Generating molecules")
    qr.log_report("--------------------")
    for i_m in range(N_molecules):
        mol = qr.Molecule([0.0, ex_energies[i_m]])
        mols.append(mol)
        qr.log_info("Molecule:", i_m)

        # Randomly oriented transition dipole moment
        vec = numpy.random.rand(3) - 0.5 * numpy.ones(3)
        vec = qr.normalize2(vec, dipole_length)
        mol.set_dipole(0, 1, vec)
        qr.log_info("Transition dipole moment:", vec)

        # Randomly placing the molecule
        placed = False
        while not placed:
            pos = numpy.random.rand(3) - 0.5 * numpy.ones(3)
            pos = qr.normalize2(pos, dist_max)
            pos_n = numpy.array(pos) + previous_position
コード例 #21
0
    print(
        """
*******************************************************************************
*
*      J =""", J, "1/cm\n*", """
*******************************************************************************
""")
    ###########################################################################
    #
    #   Model system definition
    #
    ###########################################################################

    #   Two molecules
    with qr.energy_units("1/cm"):
        m1 = qr.Molecule([0.0, E1])
        m2 = qr.Molecule([0.0, E2])

    #   Aggregate is built from the molecules
    agg = qr.Aggregate([m1, m2])

    #   Couplings between them are set
    with qr.energy_units("1/cm"):
        agg.set_resonance_coupling(0, 1, J)

    #   Interaction with the bath is set through bath correlation functions
    timea = qr.TimeAxis(0.0, N, dt)
    cpar1 = dict(ftype="OverdampedBrownian-HighTemperature",
                 reorg=lamb,
                 cortime=tc,
                 T=Temperature)
コード例 #22
0
dipoles = np.empty([numMol, 2])
mag = math.sqrt((circle[0][0]**2) + (circle[0][1]**2))
for i in range(numMol):
    dipoles[i][0] = -circle[i][1]
    dipoles[i][1] = circle[i][0]
    dipoles[i][0] = dipoles[i][0] / mag
    dipoles[i][1] = dipoles[i][1] / mag
    dipoles[i][0] = dipoles[i][0] * dipoleStrength
    dipoles[i][1] = dipoles[i][1] * dipoleStrength

energies = [12500] * numMol
#energies = [12000, 12100, 12200, 12300, 12400, 12150, 12250, 12350]
forAggregate = []
for i in range(numMol):
    molName = qr.Molecule()
    with qr.energy_units("1/cm"):
        molName.set_energy(1, energies[i])
        #molName.set_energy(1, random.gauss(energies[i], staticDis))
    molName.set_transition_environment((0, 1), cf)
    #molName.position = [0.0, i*10.0, 0.0]
    molName.position = [circle[i][0], circle[i][1], 0.0]
    #molName.set_dipole(0,1,[0.0, 10.0, 0.0])
    molName.set_dipole(0, 1, [dipoles[i][0], dipoles[i][1], 0.0])
    forAggregate.append(molName)

#######################################################################
# Creation of the aggregate protein
#######################################################################
'''
pdb_name = 'LH1'
コード例 #23
0
# -*- coding: utf-8 -*-

#<remove>
_show_plots_ = False
#</remove>

import quantarhei as qr

en = [0.0, 1.0]

M = qr.Molecule(name="My first two-level molecule", elenergies=en)

H = M.get_Hamiltonian()

print(H)

print("version = ", qr.Manager().version)
コード例 #24
0
ファイル: demo_abs.py プロジェクト: xuanleng/quantarhei
lab = qr.LabSetup()
lab.set_polarizations(pulse_polarizations=[X, X, X], detection_polarization=X)

###############################################################################
#
# Calculation with a realistic lineshape using bath correlation function
#
###############################################################################

#
# Set up molecules composing an aggregate
#
with qr.energy_units("1/cm"):
    # molecule 1
    # molecular states
    m1 = qr.Molecule([0.0, 10000.0])
    # transition dipole moment
    m1.set_dipole(0, 1, [1.0, 0.0, 0.0])

    # molecule 2
    m2 = qr.Molecule([0.0, 11000.0])
    m2.set_dipole(0, 1, [1.0, 0.0, 0.0])

#
# Create aggregate of the two molecules
#
agg = qr.Aggregate(molecules=[m1, m2])

#
# Define time span of the calculation
#
コード例 #25
0
    Absorption of a monomeric two-level molecule


"""
cfce_params1 = dict(ftype="OverdampedBrownian",
                   reorg=20.0,
                   cortime=100.0,
                   T=100,matsubara=20)

en = 12000.0

e_units = qr.energy_units("1/cm")

with e_units:
    m = qr.Molecule(name="Molecule",elenergies=[0.0,en])
    with qr.energy_units("1/cm"):
        cfce1 = qr.CorrelationFunction(ta,cfce_params1)
    
m.set_egcf((0,1),cfce1)   
m.set_dipole(0,1,[0.0, 1.0, 0.0])

ac = qr.AbsSpectrumCalculator(ta,m) 

with qr.energy_units("1/cm"): 
    ac.bootstrap(rwa=en)
    a1 = ac.calculate()

HH = m.get_Hamiltonian()

if _show_plots_: