コード例 #1
0
def exponential_map(r):
    r"""
    Apply the exponential map to a 3d vector representing an orientation;
    :math:`exp : \mathbb{R}^3 \rightarrow \mathbb{S}^3`, where :math:`\mathbb{S}^3` is a unit sphere in
    :math:`\mathbb{R}^4`.

    The mapping is given by:

    .. math::

        \exp(\pmb{r}) = \left\{ \begin{array}{ll}
                \cos(||\pmb{r}||) + \sin(||\pmb{r}||) \frac{r}{||r||}, & \pmb{r} \neq \pmb{0} \\
                1, & \text{otherwise}
            \end{array} \right.


    where :math:`\pmb{r} \in \mathbb{R}^3`, and we use the following representation for the quaternion
    :math:`q = s + \pmb{v}` where :math:`s \in \mathbb{R}` is its scalar part, and :math:`\pmb{v} \in \mathbb{R}^3` is
    its vector part.

    Args:
        r (np.array[float[3]]): 3d vector

    Returns:
        np.array[float[4]]: quaternion
    """
    if np.allclose(r, np.zeros(3)):
        return quaternion.quaternion(1, 0, 0, 0)
    r_ = np.linalg.norm(r)
    x, y, z = np.sin(r_) * r / r_
    return quaternion.quaternion(np.cos(r_), x, y, z)
コード例 #2
0
def noise_application(noiseWidth, vector):
    
    # Generate a random vector in solid angle 4*pi*nu around north pole
    z = np.random.uniform(0., 1.) * (1 - cos(noiseWidth)) + cos(noiseWidth)
    phi = np.random.uniform(0., 1.) * 2 * np.pi
    x = sqrt(1 - z**2) * cos( phi )
    y = sqrt(1 - z**2) * sin( phi )
    
    # Rotate the noise vector to be in a cone around the directional vector
    # rotation axis
    # pole = np.array([0, 0, 1])
    vector = vector/ sqrt(vector[0]**2 + vector[1]**2 + vector[2]**2)
    u =  np.cross([0, 0, 1], vector)
    #u = u/norm(u)
    # rotation angle
    rotTheta = np.arccos(np.dot(vector, [0, 0, 1]))
    #prepare rot angle for quaternion
    axisAngle = 0.5*rotTheta * u / sqrt(u[0]**2 + u[1]**2 + u[2]**2)
    # rotation matrix
    #M = expm( np.cross( np.eye(3), u * rotTheta ) )
    # Quaternion stuff - pretty fast, compared to other stuff...
    vec = quat.quaternion(x, y, z)
    qlog = quat.quaternion(*axisAngle)
    q = np.exp(qlog)
    
    vPrime = q * vec * np.conjugate(q)
    
    return vPrime.imag
コード例 #3
0
    def __init__(
            self,
            transform: TransformType = None,
            *,
            translation: Iterable[float] = (0, 0, 0),
            rotation: RotationType = (1, 0, 0, 0),
    ) -> None:
        if transform is not None:
            if isinstance(transform, Transform3D):
                self._translation = transform.translation
                self._rotation = transform.rotation
                return

            if isinstance(transform, Sequence):  # pylint: disable=W1116
                transform = np.array(transform)
            if transform.shape != (3, 4) and transform.shape != (4, 4):
                raise ValueError(
                    "The shape of input transform matrix must be 3x4 or 4x4.")

            self._translation = Vector3D(transform[0, 3], transform[1, 3],
                                         transform[2, 3])
            self._rotation = from_rotation_matrix(transform)
            return

        self._translation = Vector3D(*translation)
        if isinstance(rotation, quaternion):
            self._rotation = quaternion(rotation)
        else:
            self._rotation = quaternion(*rotation)
コード例 #4
0
 def make_obs(self):
     '''
     State vector of length 17
     contains two poses, and length,width and height of object bb
     '''
     state = None
     if self.state_rep == "state":
         objs = self.machine.get_objects(True)
         gripper_pose = list(
             self.machine.env._scene.get_observation().gripper_pose)
         gripper_quat = gripper_pose[3:]
         gripper_quat[0], gripper_quat[-1] = gripper_quat[-1], gripper_quat[
             0]
         quat = quaternion(*gripper_quat)
         g_vec = list(as_rotation_vector(quat))
         obj_pose = list(objs[OBJECT].get_pose())
         obj_quat = obj_pose[3:]
         obj_quat[0], obj_quat[-1] = obj_quat[-1], obj_quat[0]
         quat = quaternion(*obj_quat)
         r_vec = list(as_rotation_vector(quat))
         obj_bb = objs[OBJECT].get_bounding_box()
         x_diff = obj_bb[0] - obj_bb[3]
         y_diff = obj_bb[1] - obj_bb[4]
         z_diff = obj_bb[2] - obj_bb[5]
         state = np.array(gripper_pose[:3]+g_vec+ \
                             obj_pose[:3]+r_vec+[x_diff,y_diff,z_diff]).reshape(1,-1)
     elif self.state_rep == "vision":
         obs = self.machine.env._scene.get_observation()
         state = obs.wrist_rgb
         # plt.imsave("image.png",state)
     return state
コード例 #5
0
ファイル: test_compare.py プロジェクト: zsqiang001/kapture
    def setUp(self):
        self.rotation_a = quaternion.quaternion(-0.572, 0.198, 0.755, -0.252)
        self.rotation_a_negative = quaternion.quaternion(
            0.572, -0.198, -0.755, 0.252)

        self.translation_a = [144.801, -74.548, -17.746]

        self.pose_a = kapture.PoseTransform(self.rotation_a,
                                            self.translation_a)
        self.pose_a_negative = kapture.PoseTransform(self.rotation_a_negative,
                                                     self.translation_a)

        self.rotation_b = quaternion.quaternion(0.878, 0.090, 0.374, -0.285)
        self.rotation_b_negative = quaternion.quaternion(
            -0.878, -0.090, -0.374, 0.285)

        self.translation_b = [4.508, 45.032, -37.840]

        self.pose_b = kapture.PoseTransform(self.rotation_b,
                                            self.translation_b)
        self.pose_b_negative = kapture.PoseTransform(self.rotation_b_negative,
                                                     self.translation_b)

        self.pose_ab = kapture.PoseTransform(self.rotation_a,
                                             self.translation_b)
        self.pose_ba = kapture.PoseTransform(self.rotation_b,
                                             self.translation_a)

        self.pose_none = kapture.PoseTransform(r=None, t=None)
        self.pose_r_none = kapture.PoseTransform(r=None, t=self.translation_a)
        self.pose_t_none = kapture.PoseTransform(r=self.rotation_a, t=None)
コード例 #6
0
    def test_rmul(self):
        translation = [1, 2, 3]
        rotation = quaternion(0, 1, 0, 0)
        transform = Transform3D(translation=translation, rotation=rotation)
        quaternion_1 = quaternion(1, 2, 3, 4)

        labeledbox3d = LabeledBox3D(transform,
                                    category=_CATEGORY,
                                    attributes=_ATTRIBUTES,
                                    instance=_INSTANCE)

        assert labeledbox3d.__rmul__(transform) == LabeledBox3D(
            translation=[2, 0, 0],
            rotation=[-1, 0, 0, 0],
            category=_CATEGORY,
            attributes=_ATTRIBUTES,
            instance=_INSTANCE,
        )

        assert labeledbox3d.__rmul__(quaternion_1) == LabeledBox3D(
            translation=[1.7999999999999996, 2, 2.6],
            rotation=[-2, 1, 4, -3],
            category=_CATEGORY,
            attributes=_ATTRIBUTES,
            instance=_INSTANCE,
        )

        assert labeledbox3d.__rmul__(1) == NotImplemented
コード例 #7
0
ファイル: SetupData.py プロジェクト: isaaclegred/qnm-fitting
def get_corrected_2_2(file_name):
    h = scri.SpEC.read_from_h5(file_name + "/Extrapolated_N2.dir")
    # Get the waveform in the coprecessing frame
    i = quaternion.quaternion(0, 1, 0, 0)
    j = quaternion.quaternion(0, 0, 1, 0)
    k = quaternion.quaternion(0, 0, 0, 1)

    def cross(a, b):
        return 1 / 2 * (a * b - b * a)

    k_hat = quaternion.quaternion(0, 0.25269634778, 0.04202266793,
                                  0.80968828452)
    k_hat = k_hat / np.sqrt(k_hat * np.conjugate(k_hat))
    ax = cross(k, k_hat)
    ax = ax / np.sqrt(ax * np.conjugate(ax))
    cos_al = np.real(k * np.conjugate(k_hat))
    alpha = np.arccos(cos_al)
    rotor = np.concatenate(
        [np.array([np.cos(0.5 * alpha)]),
         np.sin(0.5 * alpha) * ax.imag])
    h.to_coprecessing_frame()
    #h_rot = h.transform(frame_rotation=rotor)
    h_rot = h
    return np.transpose(
        np.stack([
            h_rot.t,
            np.real(h_rot.data[:, lm(2, 2, h_rot.ell_min)]),
            np.imag(h_rot.data[:, lm(2, 2, h_rot.ell_min)])
        ]))
コード例 #8
0
    def test_init(self):
        sequence = [[1, 0, 0, 1], [0, 1, 0, 1]]
        with pytest.raises(ValueError):
            Transform3D(sequence)

        transform = Transform3D(None)
        assert transform.translation == Vector3D(0.0, 0.0, 0.0)
        assert transform.rotation == quaternion(1.0, 0.0, 0.0, 0.0)

        sequence = [[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]]
        transform = Transform3D(sequence)
        assert transform.translation == Vector3D(1, 1, 1)
        assert transform.rotation == quaternion(1.0, -0.0, -0.0, -0.0)

        numpy = np.array(sequence)
        transform = Transform3D(numpy)
        assert transform.translation == Vector3D(1, 1, 1)
        assert transform.rotation == quaternion(1.0, -0.0, -0.0, -0.0)

        transform_1 = Transform3D(transform)
        assert transform_1.translation == Vector3D(1, 1, 1)
        assert transform_1.rotation == quaternion(1.0, -0.0, -0.0, -0.0)

        transform = Transform3D(translation=[1, 2, 3], rotation=[1, 0, 0, 0])
        assert transform.translation == Vector3D(1, 2, 3)
        assert transform.rotation == quaternion(1.0, 0.0, 0.0, 0.0)
コード例 #9
0
def interpolate_quaternion_linear(quat_data, input_timestamp,
                                  output_timestamp):
    n_input = quat_data.shape[0]
    assert input_timestamp.shape[0] == n_input
    assert quat_data.shape[1] == 4
    n_output = output_timestamp.shape[0]

    quat_inter = np.zeros([n_output, 4])
    ptr1 = 0
    ptr2 = 0
    for i in range(n_output):
        if ptr1 >= n_input - 1 or ptr2 >= n_input:
            raise ValueError("")
        # Forward to the correct interval
        while input_timestamp[ptr1 + 1] < output_timestamp[i]:
            ptr1 += 1
            if ptr1 == n_input - 1:
                break
        while input_timestamp[ptr2] < output_timestamp[i]:
            ptr2 += 1
            if ptr2 == n_input:
                break
        q1 = quaternion.quaternion(*quat_data[ptr1])
        q2 = quaternion.quaternion(*quat_data[ptr2])
        quat_inter[i] = quaternion.as_float_array(
            quaternion.quaternion_time_series.slerp(q1, q2,
                                                    input_timestamp[ptr1],
                                                    input_timestamp[ptr2],
                                                    output_timestamp[i]))
    return quat_inter
コード例 #10
0
    def test_rmul(self):
        size = [1, 2, 3]
        translation = [1, 2, 3]
        rotation = quaternion(0, 1, 0, 0)
        transform = Transform3D(translation, rotation)
        quaternion_1 = quaternion(1, 2, 3, 4)

        labeledbox3d = LabeledBox3D(
            size=size,
            translation=translation,
            rotation=rotation,
            category="cat",
            attributes={"gender": "male"},
            instance="12345",
        )

        assert labeledbox3d.__rmul__(transform) == LabeledBox3D(
            size=size,
            translation=[2, 0, 0],
            rotation=[-1, 0, 0, 0],
            category="cat",
            attributes={"gender": "male"},
            instance="12345",
        )

        assert labeledbox3d.__rmul__(quaternion_1) == LabeledBox3D(
            size=size,
            translation=[1.7999999999999996, 2, 2.6],
            rotation=[-2, 1, 4, -3],
            category="cat",
            attributes={"gender": "male"},
            instance="12345",
        )

        assert labeledbox3d.__rmul__(1) == NotImplemented
コード例 #11
0
    def rate_to_quat(self, omega, dt):
        """Rotation quaternion from gyroscope sample

        Args:
            omega (numpy.ndarray): angular velocity vector [x,y,z]. Same as scaled gyro sample in rad/s.
            dt (float): Time delta between gyro samples for angle integration.

        Returns:
            numpy.ndarray: Rotation quaternion corresponding to orientation change
        """

        # https://stackoverflow.com/questions/24197182/efficient-quaternion-angular-velocity/24201879#24201879
        # no idea how it fully works, but it does
        ha = omega * dt * 0.5
        l = np.sqrt(ha.dot(ha))

        if l > 1.0e-12:

            ha *= np.sin(l) / l

            q0 = np.cos(l)
            q1 = ha[0]
            q2 = ha[1]
            q3 = ha[2]

            return quat.normalize(quat.quaternion(q0, q1, q2, q3))

        else:
            return quat.quaternion(1, 0, 0, 0)
コード例 #12
0
def quat_from_two_vectors(v0: np.ndarray, v1: np.ndarray) -> qt.quaternion:
    r"""Creates a quaternion that rotates the first vector onto the second vector

    :param v0: The starting vector, does not need to be a unit vector
    :param v1: The end vector, does not need to be a unit vector
    :return: The quaternion

    Calculates the quaternion q such that

    .. code:: py

        v1 = quat_rotate_vector(q, v0)
    """

    v0 = v0 / np.linalg.norm(v0)
    v1 = v1 / np.linalg.norm(v1)
    c = v0.dot(v1)
    if c < (-1 + 1e-8):
        c = max(c, -1)
        m = np.stack([v0, v1], 0)
        _, _, vh = np.linalg.svd(m, full_matrices=True)
        axis = vh[2]
        w2 = (1 + c) * 0.5
        w = np.sqrt(w2)
        axis = axis * np.sqrt(1 - w2)
        return qt.quaternion(w, *axis)

    axis = np.cross(v0, v1)
    s = np.sqrt((1 + c) * 2)
    return qt.quaternion(s * 0.5, *(axis / s))
コード例 #13
0
ファイル: training_data.py プロジェクト: fangxu622/IMUProject
def compute_delta_angle(time_stamp, position, orientation, sample_points=None,
                        local_axis=quaternion.quaternion(1.0, 0., 0., -1.)):
    """
    Compute the cosine between the moving direction and viewing direction
    :param time_stamp: Time stamp
    :param position: Position. When passing Nx2 array, compute ignore z direction
    :param orientation: Orientation as quaternion
    :param local_axis: the viewing direction in the device frame. Default is set w.r.t. to android coord frame
    :return:
    """
    if sample_points is None:
        sample_points = np.arange(0, time_stamp.shape[0], dtype=int)
    epsilon = 1e-10
    speed_dir = compute_speed(time_stamp, position)
    speed_dir = np.concatenate([np.zeros([1, position.shape[1]]), speed_dir], axis=0)
    speed_mag = np.linalg.norm(speed_dir, axis=1)
    cos_array = np.zeros(sample_points.shape[0], dtype=float)
    valid_array = np.empty(sample_points.shape[0], dtype=bool)
    for i in range(sample_points.shape[0]):
        if speed_mag[sample_points[i]] <= epsilon:
            valid_array[i] = False
        else:
            q = quaternion.quaternion(*orientation[sample_points[i]])
            camera_axis = (q * local_axis * q.conj()).vec[:position.shape[1]]
            cos_array[i] = min(np.dot(speed_dir[sample_points[i]], camera_axis) / speed_mag[sample_points[i]], 1.0)
            valid_array[i] = True
    return cos_array, valid_array
コード例 #14
0
def test_quaternion_subtract(Qs):
    for q in Qs[Qs_finite]:
        for p in Qs[Qs_finite]:
            assert q - p == quaternion.quaternion(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z)
    for q in Qs[Qs_nonnan]:
        for s in [-3, -2.3, -1.2, -1.0, 0.0, 0, 1.0, 1, 1.2, 2.3, 3]:
            assert (q - s == quaternion.quaternion(q.w - s, q.x, q.y, q.z))
            assert (s - q == quaternion.quaternion(s - q.w, -q.x, -q.y, -q.z))
コード例 #15
0
def get_relative_rotation(src_orientation, dest_orientation):
    a = quaternion.quaternion(src_orientation[0], src_orientation[1],
                              src_orientation[2], src_orientation[3])
    b = quaternion.quaternion(dest_orientation[0], dest_orientation[1],
                              dest_orientation[2], dest_orientation[3])

    relative_rotation = quaternion.as_float_array(b * a.inverse())

    return relative_rotation
コード例 #16
0
    def test_set_rotation(self):
        transform = Transform3D()

        transform.set_rotation([0, 1, 0, 0])
        assert transform.rotation == quaternion(0, 1, 0, 0)

        quaternion_1 = quaternion(0, 1, 0, 0)
        transform.set_rotation(quaternion_1)
        assert transform.rotation == quaternion_1
コード例 #17
0
def corotating_frame(W, R0=quaternion.one, tolerance=1e-12, z_alignment_region=None, return_omega=False):
    """Return rotor taking current mode frame into corotating frame

    This function simply evaluates the angular velocity of the waveform, and
    then integrates it to find the corotating frame itself.  This frame is
    defined to be the frame in which the time-dependence of the waveform is
    minimized --- at least, to the extent possible with a time-dependent
    rotation.  This frame is only unique up to a single overall rotation, which
    is passed in as an optional argument to this function.

    Parameters
    ----------
    W: Waveform
    R0: quaternion [defaults to 1]
        Value of the output rotation at the first output instant
    tolerance: float [defaults to 1e-12]
        Absolute tolerance used in integration
    z_alignment_region: None or 2-tuple of floats [defaults to None]
        If not None, the dominant eigenvector of the <LL> matrix is aligned with the z axis,
        averaging over this portion of the data.  The first and second elements of the input are
        considered fractions of the inspiral at which to begin and end the average.  For example,
        (0.1, 0.9) would lead to starting 10% of the time from the first time step to the max norm
        time, and ending at 90% of that time.
    return_omega: bool [defaults to False]
        If True, return a 2-tuple consisting of the frame (the usual returned object) and the
        angular-velocity data.  That is frequently also needed, so this is just a more efficient
        way of getting the data.

    """
    from quaternion.quaternion_time_series import integrate_angular_velocity, squad

    omega = angular_velocity(W)
    t, frame = integrate_angular_velocity((W.t, omega), t0=W.t[0], t1=W.t[-1], R0=R0, tolerance=tolerance)
    if z_alignment_region is None:
        correction_rotor = quaternion.one
    else:
        initial_time = W.t[0]
        inspiral_time = W.max_norm_time() - initial_time
        t1 = initial_time + z_alignment_region[0] * inspiral_time
        t2 = initial_time + z_alignment_region[1] * inspiral_time
        i1 = np.argmin(np.abs(W.t - t1))
        i2 = np.argmin(np.abs(W.t - t2))
        R = frame[i1:i2]
        i1m = max(0, i1 - 10)
        i1p = i1m + 21
        RoughDirection = omega[i1m + 10]
        Vhat = W[i1:i2].LLDominantEigenvector(RoughDirection=RoughDirection, RoughDirectionIndex=0)
        Vhat_corot = np.array([(Ri.conjugate() * quaternion.quaternion(*Vhati) * Ri).vec for Ri, Vhati in zip(R, Vhat)])
        Vhat_corot_mean = quaternion.quaternion(*np.mean(Vhat_corot, axis=0)).normalized()
        correction_rotor = np.sqrt(-quaternion.z * Vhat_corot_mean).inverse()
    frame = frame * correction_rotor
    frame = frame / np.abs(frame)
    if return_omega:
        return (frame, omega)
    else:
        return frame
コード例 #18
0
 def get_grasp_pose(self, theta):
     q = quaternion(0, 1, 0, 0)
     cos = np.cos(theta / 2)
     sin = np.sin(theta / 2)
     p = quaternion(cos, 0, 0, sin)
     rot_qt = p * q
     print("Theta", rot_qt, cos, sin, theta / 2)
     rot_arr = qn.as_float_array(rot_qt)
     rot_qt = [rot_arr[1], rot_arr[2], rot_arr[3], rot_arr[0]]
     return rot_qt
コード例 #19
0
    def set_rotation(self, rotation: RotationType) -> None:
        """Set the rotation of the transform.

        Arguments:
            rotation: Rotation in a sequence of [w, x, y, z] or numpy quaternion.

        """
        if isinstance(rotation, quaternion):
            self._rotation = quaternion(rotation)
        else:
            self._rotation = quaternion(*rotation)
コード例 #20
0
def correct_gyro_drifting(t, rv, magnet):
    assert t.shape[0] == rv.shape[0]
    assert t.shape[0] == magnet.shape[0]
    d_rot = np.empty([rv.shape[0], 4], dtype=float)
    rv_quats = []
    for r in rv:
        rv_quats.append(quaternion.quaternion(*r))

    rv_dev = [quaternion.quaternion(1.0, 0.0, 0.0, 0.0)]
    for i in range(1, rv.shape[0]):
        d_rot[i] = quaternion.as_float_array()
コード例 #21
0
    def set_traj(self, traj, quat):
        q_init = quaternion.quaternion(quat.w_val, quat.x_val, quat.y_val,
                                       quat.z_val).normalized()
        assert (abs(q_init.norm() - 1) < 0.0001)
        for quat in traj:
            converted = q_init * quaternion.quaternion(quat[3], quat[4],
                                                       quat[5], quat[6])
            quat[3:7] = [converted.w, converted.x, converted.y, converted.z]
            # quat[11:] = quaternion.rotate_vectors(converted, quat[11:])

        self.reference = traj
        self.reset_errors()
コード例 #22
0
 def test_rmul(self):
     transform = Transform3D(translation=[1, 2, 3],
                             rotation=quaternion(0, 1, 0, 0))
     quaternion_1 = quaternion(1, 2, 3, 4)
     box3d = Box3D(transform)
     assert box3d.__rmul__(transform) == Box3D(translation=[2, 0, 0],
                                               rotation=quaternion(
                                                   -1, 0, 0, 0))
     assert box3d.__rmul__(quaternion_1) == Box3D(
         translation=[1.7999999999999996, 2, 2.6],
         rotation=quaternion(-2, 1, 4, -3))
     assert box3d.__rmul__(1) == NotImplemented
コード例 #23
0
 def __init__(self, time_stamp, orientation, linacce, cos_array, speed_ind,
              variable_ind):
     super().__init__(time_stamp, orientation, linacce, variable_ind)
     self.speed_ind_ = speed_ind
     self.cos_array_ = cos_array
     self.camera_axis_ = np.empty(linacce.shape, dtype=float)
     camera_axis_local = quaternion.quaternion(1., 0., 0., -1.)
     for i in range(linacce.shape[0]):
         q = quaternion.quaternion(*orientation[i])
         self.camera_axis_[i] = (q * camera_axis_local *
                                 q.conj()).vec[:linacce.shape[1]]
     self.camera_axis_ /= np.linalg.norm(self.camera_axis_, axis=1)[:, None]
コード例 #24
0
    def test_set_rotation(self):
        transform = Transform3D()

        transform.set_rotation(0, 1, 0, 0)
        assert transform.rotation == quaternion(0, 1, 0, 0)

        quaternion_1 = quaternion(0, 1, 0, 0)
        transform.set_rotation(quaternion=quaternion_1)
        assert transform.rotation == quaternion_1

        with pytest.raises(TypeError):
            transform.set_rotation([0, 1, 0, 0])
コード例 #25
0
ファイル: q_manual_test1.py プロジェクト: schen0x/py_cube
def rotate(px, py, pz, ccAngleinDegree, axis_i, axis_j, axis_k):
    q = quaternion(ccAngleinDegree, axis_i, axis_j, axis_k)
    q.lsq()
    q_revert = quaternion(-ccAngleinDegree, axis_i, axis_j, axis_k)
    p = array.array('d', [px, py, pz])
    print("p=", p)
    pq = q * p
    print("pxq= ", pq)
    q_revert.lsq()
    p_new = pq * q_revert
    print("p_new=: ", p_new)
    return p_new
コード例 #26
0
    def rotate_quaternion(self, axis, v, theta):
        vector = np.array([0.] + v)
        rot_axis = np.array([0.] + axis)
        axis_angle = (theta * 0.5) * rot_axis / np.linalg.norm(rot_axis)

        vec = quat.quaternion(*v)
        qlog = quat.quaternion(*axis_angle)
        q = np.exp(qlog)

        for i in range(self.compute_point):
            result = q * vec * np.conjugate(q)
        return result
コード例 #27
0
def test_quaternion_add(Qs):
    for j in Qs_nonnan:
        for k in Qs_nonnan:
            q = Qs[j]
            p = Qs[k]
            assert (q + p == quaternion.quaternion(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z)
                    or (j == q_inf1 and k == q_minf1)
                    or (k == q_inf1 and j == q_minf1))
    for q in Qs[Qs_nonnan]:
        for s in [-3, -2.3, -1.2, -1.0, 0.0, 0, 1.0, 1, 1.2, 2.3, 3]:
            assert (q + s == quaternion.quaternion(q.w + s, q.x, q.y, q.z))
            assert (s + q == quaternion.quaternion(q.w + s, q.x, q.y, q.z))
コード例 #28
0
def drehen3D(objekt, winkelwerte):
    for j, theta in enumerate(winkelwerte):
        #j = 0-2 und damit auch gleich aus objekt[0-2] die Objektachsen
        theta = np.radians(theta)
        axis_angle = (theta * 0.5) * objekt[j] / np.linalg.norm(objekt[j])
        for i, punkt in enumerate(objekt):
            vec = quat.quaternion(*punkt)
            qlog = quat.quaternion(*axis_angle)
            q = np.exp(qlog)
            vec = q * vec * np.conjugate(q)
            objekt[i] = np.array([0, *vec.imag])
    return objekt[3:]
コード例 #29
0
    def load(self, data_path):
        if data_path[-1] == '/':
            data_path = data_path[:-1]
        with open(osp.join(data_path, 'info.json')) as f:
            self.info = json.load(f)

        # {'tango_reference_time': 3697949488366.0, 'date': '01/21/19', 'imu_init_gyro_bias': [0.005569000000000001, 0.009201, -0.00018299999999999914], 'imu_acce_scale': [0.9987918889533104, 0.997062129866083, 0.9932574091553678], 'grv_ori_error': 8.353779492444412, 'align_tango_to_body': [-0.4841758535176575, -0.4938374978693588, -0.5424326634072199, 0.47693298715598254], 'start_frame': 5896, 'imu_end_gyro_bias': [0.005432, 0.008774, -4.6e-05], 'type': 'annotated', 'imu_reference_time': 3610942440968.0, 'start_calibration': [0.0, 0.99995545, 0.009439, 0.0], 'ekf_ori_error': 3.6239102945197676, 'imu_acce_bias': [-0.15661902624553775, -0.026333329541761968, 0.05681364453654479], 'gyro_integration_error': 8.481689436777705, 'device': 'asus4', 'length': 323.7550000070669, 'imu_time_offset': -0.07619643889847794, 'end_calibration': [0.0, 0.99998599, 0.0052938, 0.0]}

        self.info['path'] = osp.split(data_path)[-1]

        self.info['ori_source'], ori, self.info['source_ori_error'] = select_orientation_source( # ori is hdf5.synced.game_rv i. e. Android Sensor.TYPE_GAME_ROTATION_VECTOR
            data_path, self.max_ori_error, self.grv_only)
        #('game_rv', array([[ 0.02301384, -0.734161  ,  0.00956859,  0.67851714], [ 0.02296023, -0.73417201,  0.00956628,  0.67850771], ..., [ 0.05427992,  0.70881762,  0.07637797, -0.6991363 ]]]), 8.353779492444412)

        with h5py.File(osp.join(data_path, 'data.hdf5')) as f:
            gyro_uncalib = f['synced/gyro_uncalib']                                                                # <HDF5 dataset "gyro_uncalib": shape (64752, 3), type "<f8">
            acce_uncalib = f['synced/acce']                                                                        # <HDF5 dataset "acce": shape (64752, 3), type "<f8">
            gyro = gyro_uncalib - np.array(self.info['imu_init_gyro_bias'])                                        # array([[-0.02230625,  0.01376489,  0.01876768], [-0.01673078,  0.00785385,  0.01808999], ..., [ 0.00657855, -0.02807542,  0.00804713]])
            acce = np.array(self.info['imu_acce_scale']) * (acce_uncalib - np.array(self.info['imu_acce_bias']))   # array([[-9.76895341, -0.19332236, -0.85234999], [-9.76140265, -0.2099069 , -0.81018915], ..., [-9.82066284, -0.32593967, -0.28265888]])
            ts = np.copy(f['synced/time'])                                                                         # array([3641.39639807, 3641.40139807, 3641.40639807, ..., 3965.14139807, 3965.14639807, 3965.15139807])
            tango_pos = np.copy(f['pose/tango_pos'])                                                               # array([[ 0.00747055,  0.0794231 ,  0.04721916], [ 0.00743938,  0.07954534,  0.04721213], ..., [ 0.04869788, -0.01891041, -0.03532039]])
            init_tango_ori = quaternion.quaternion(*f['pose/tango_ori'][0])                                        # quaternion(0.500218919180744, 0.498520940104168, 0.458115146317795, -0.539803994906776)

        # Compute the IMU orientation in the Tango coordinate frame.
        ori_q = quaternion.from_float_array(ori)                                   # array([quaternion(0.0230138445473811, -0.734161004581412, 0.00956858773770847, 0.678517142961637), quaternion(0.0229602307881793, -0.734172007659053, 0.00956628356173319, 0.678507709011024), ..., quaternion(0.0542799190079345, 0.708817623072373, 0.0763779734707989, -0.6991362963311)], dtype=quaternion)
        # hdf5.synced.game_rv i. e. Android Sensor.TYPE_GAME_ROTATION_VECTOR

        rot_imu_to_tango = quaternion.quaternion(*self.info['start_calibration'])  # quaternion(0, 0.99995545, 0.009439, 0)
        init_rotor = init_tango_ori * rot_imu_to_tango * ori_q[0].conj()           # quaternion(-0.695289552060529, 0.00118374652078425, 0.00248606386725569, 0.718723783950829)
        ori_q = init_rotor * ori_q                                                 # array([quaternion(-0.5028224217168, 0.50529138394065, -0.535057892743795, -0.453388785030156), quaternion(-0.502778345472314, 0.505300603413145, -0.535064320967734, -0.453420734559951), ..., quaternion(0.463716682908265, -0.54940199756135, 0.457301820727505, 0.523442677366401)], dtype=quaternion)
        # ori_q = f['pose/tango_ori'][0] * self.info['start_calibration'] * conj(f['synced/game_rv'][0]) * f['synced/game_rv']

        dt = (ts[self.w:] - ts[:-self.w])[:, None]                                 # array([[1.], [1.], [1.], ..., [1.],[1.], [1.]])

        glob_v = (tango_pos[self.w:] - tango_pos[:-self.w]) / dt                   # array([[-0.00533056,  0.01667982, -0.00509732], [-0.00531125,  0.016594  , -0.00511179], ..., [-0.0023489 ,  0.00633583, -0.00057166]])

        # these two below are position vector arrays
        gyro_q = quaternion.from_float_array(np.concatenate([np.zeros([gyro.shape[0], 1]), gyro], axis=1))  # array([quaternion(0, -0.0223062507369463, 0.0137648946088728, 0.0187676819234896), quaternion(0, -0.0167307794589504, 0.00785385399152264, 0.018089989505323), ..., quaternion(0, 0.00657855020053501, -0.0280754170707831, 0.0080471337151681)], dtype=quaternion)
        acce_q = quaternion.from_float_array(np.concatenate([np.zeros([acce.shape[0], 1]), acce], axis=1))  # array([quaternion(0, -9.76895340810378, -0.193322357928738, -0.852349993053583), quaternion(0, -9.76140265037272, -0.209906902110648, -0.810189151712629), ..., quaternion(0, -9.8206628384554, -0.325939671417927, -0.282658875290474)], dtype=quaternion)

        # each element vector rotated by the corresponding ori_q rotation quaternion
        # At test time, we use the coordinate frame defined by system device orientations from Android or iOS, whose Z axis is aligned with gravity.
        # The whole is transformed into the global (Tango) coordinate frame.
        glob_gyro = quaternion.as_float_array(ori_q * gyro_q * ori_q.conj())[:, 1:]  # array([[-0.01258328,  0.02161022,  0.02034508], [-0.00665554,  0.02000185,  0.0149826 ], ..., [ 0.02674353,  0.01209917, -0.0058859 ]])
        glob_acce = quaternion.as_float_array(ori_q * acce_q * ori_q.conj())[:, 1:]  # array([[-3.46650073e-02, -3.36474233e-02,  9.80783499e+00], [-1.38849800e-02,  6.54256497e-03,  9.79719413e+00], ..., [ 3.31727211e-02, -6.26925428e-02,  9.82980926e+00]])

        start_frame = self.info.get('start_frame', 0)                                # 5896
        self.ts = ts[start_frame:]                                                   # array([3670.87639807, 3670.88139807, 3670.88639807, ..., 3965.14139807, 3965.14639807, 3965.15139807])
        self.features = np.concatenate([glob_gyro, glob_acce], axis=1)[start_frame:] # array([[-5.94662071e-03, -9.38751552e-03, -5.15188486e-03, -3.08588928e-02,  6.39869105e-02,  9.86019268e+00], [-5.27530580e-03, -7.75847573e-03, -1.59778536e-02, -3.54599110e-02,  5.16253587e-02,  9.82394159e+00], ..., [ 2.67435308e-02,  1.20991655e-02, -5.88589595e-03, 3.31727211e-02, -6.26925428e-02,  9.82980926e+00]])
        self.targets = glob_v[start_frame:, :2]                                      # array([[-0.02427537,  0.02117807], [-0.02406481,  0.02145767], ..., [-0.0023489 ,  0.00633583]]) targets are averaged for the window w
        self.orientations = quaternion.as_float_array(ori_q)[start_frame:]           # array([[-0.51946022,  0.24279321, -0.60182678,  0.55589147], [-0.51947897,  0.24272502, -0.6018242 ,  0.55590699], ..., [ 0.46371668, -0.549402  ,  0.45730182,  0.52344268]])
        self.gt_pos = tango_pos[start_frame:]                                        # array([[ 0.17387274, -0.14344794, -0.0743621 ], [ 0.17362087, -0.14350179, -0.07425673], ..., [ 0.04869788, -0.01891041, -0.03532039]])
コード例 #30
0
def rotate_vector(input, orientation):
    """
    Rotate 3D vectors with quaternions.
    
    :param input: Nx3 array containing N 3D vectors.
    :param orientation: Nx4 array containing N quaternions.
    :return: Nx3 array containing rotated vectors.
    """
    output = np.empty(input.shape, dtype=float)
    for i in range(input.shape[0]):
        q = quaternion.quaternion(*orientation[i])
        output[i] = (q * quaternion.quaternion(1.0, *input[i]) * q.conj()).vec
    return output
コード例 #31
0
ファイル: calculus.py プロジェクト: finsberg/ldrb
def bislerp(
    Qa: np.ndarray,
    Qb: np.ndarray,
    t: float,
) -> np.ndarray:
    r"""
    Linear interpolation of two orthogonal matrices.
    Assiume that :math:`Q_a` and :math:`Q_b` refers to
    timepoint :math:`0` and :math:`1` respectively.
    Using spherical linear interpolation (slerp) find the
    orthogonal matrix at timepoint :math:`t`.
    """

    if ~Qa.any() and ~Qb.any():
        return np.zeros((3, 3))
    if ~Qa.any():
        return Qb
    if ~Qb.any():
        return Qa

    tol = 1e-12
    qa = quaternion.from_rotation_matrix(Qa)
    qb = quaternion.from_rotation_matrix(Qb)

    quat_i = quaternion.quaternion(0, 1, 0, 0)
    quat_j = quaternion.quaternion(0, 0, 1, 0)
    quat_k = quaternion.quaternion(0, 0, 0, 1)

    quat_array = [
        qa,
        -qa,
        qa * quat_i,
        -qa * quat_i,
        qa * quat_j,
        -qa * quat_j,
        qa * quat_k,
        -qa * quat_k,
    ]

    dot_arr = [abs((qi.components * qb.components).sum()) for qi in quat_array]
    max_idx = int(np.argmax(dot_arr))
    max_dot = dot_arr[max_idx]
    qm = quat_array[max_idx]

    if max_dot > 1 - tol:
        return Qb

    qm_slerp = quaternion.slerp(qm, qb, 0, 1, t)
    qm_norm = qm_slerp.normalized()
    Qab = quaternion.as_rotation_matrix(qm_norm)
    return Qab
コード例 #32
0
def bislerp(Qa, Qb, t):
    r"""
    Linear interpolation of two orthogonal matrices.
    Assiume that :math:`Q_a` and :math:`Q_b` refers to
    timepoint :math:`0` and :math:`1` respectively.
    Using spherical linear interpolation (slerp) find the
    orthogonal matrix at timepoint :math:`t`.
    """

    if Qa is None and Qb is None:
        return None
    if Qa is None:
        return Qb
    if Qb is None:
        return Qa

    tol = 1e-12
    qa = quaternion.from_rotation_matrix(Qa)
    qb = quaternion.from_rotation_matrix(Qb)

    quat_i = quaternion.quaternion(0, 1, 0, 0)
    quat_j = quaternion.quaternion(0, 0, 1, 0)
    quat_k = quaternion.quaternion(0, 0, 0, 1)

    quat_array = [
        qa,
        -qa,
        qa * quat_i,
        -qa * quat_i,
        qa * quat_j,
        -qa * quat_j,
        qa * quat_k,
        -qa * quat_k,
    ]

    def dot(qi, qj):
        return np.sum(
            [getattr(qi, s) * getattr(qj, s) for s in ["x", "y", "z", "w"]])

    dot_arr = [abs(dot(qi, qb)) for qi in quat_array]
    max_idx = np.argmax(dot_arr)
    max_dot = dot_arr[max_idx]
    qm = quat_array[max_idx]

    if max_dot > 1 - tol:
        return Qb
    else:
        qm_slerp = quaternion.slerp(qm, qb, 0, 1, t)
        qm_norm = qm_slerp.normalized()
        Qab = quaternion.as_rotation_matrix(qm_norm)
        return Qab
コード例 #33
0
def test_quaternion_members():
    Q = quaternion.quaternion(1.1, 2.2, 3.3, 4.4)
    assert Q.real == 1.1
    assert Q.w == 1.1
    assert Q.x == 2.2
    assert Q.y == 3.3
    assert Q.z == 4.4
コード例 #34
0
ファイル: projection.py プロジェクト: atthecodeface/gjslib
def conjugation(q,p):
    qc = q.copy().conjugate()
    print p[0], p[1], p[2]
    pq = quaternion(r=0,i=p[0],j=p[1],k=p[2])
    r = q*pq*qc
    print r
    return r.get()[1:]
def maritime_hall_figure(fig_num, dem_file, reference_trajectory,
        slam_trajectory,
        mis_orient = quat.quaternion(np.array([1.0,0.0,0.0,0.0])),
        mis_position = [0.00, 0.00, 0.00]):

    import os
    from matplotlib.cbook import get_sample_data
    from matplotlib._png import read_png
    import matplotlib.image as image
    matplotlib.rcParams.update({'font.size': 15, 'font.weight': 'bold'})
    #fig = plt.figure(fig_num, figsize=(28, 16), dpi=120, facecolor='w', edgecolor='k')
    #ax = fig.add_subplot(111)
    fn = get_sample_data(os.getcwd()+"/data/img/maritime_hall.png", asfileobj=False)
    maritime_hall = image.imread(fn)
    fig, ax = plt.subplots()
    ax.imshow(maritime_hall, extent=[-1.2, 25, -2, 20])
    #ax.imshow(maritime_hall, extent=[-1.2, 25, -2, 19])

    # Display Ground Truth trajectory
    from numpy import linalg as la
    ref = np.column_stack((reference_trajectory[:,0][0::1], reference_trajectory[:,1][0::1], reference_trajectory[:,2][0::1]))
    ref[:] = [(mis_orient * i * mis_orient.conj())[1:4] for i in ref ]
    ref[:] = [ i + mis_position for i in ref ]
    x = ref[:,0]
    y = ref[:,1]
    ax.plot(x, y, marker='D', linestyle='-', lw=2, alpha=0.3, color=[1.0, 1.0, 0.0],
            label='ground truth', zorder=80)

    # Annotations
    from matplotlib.offsetbox import OffsetImage, AnnotationBbox

    ax.annotate(r'Start', xy=(x[0], y[0]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points', fontsize=16,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(x[0], y[0], marker='o', facecolor='k', s=40, alpha=1.0, zorder=103)

    ax.annotate(r'End', xy=(x[x.shape[0]-1], y[y.shape[0]-1]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points',
                            fontsize=16,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(x[x.shape[0]-1], y[y.shape[0]-1], marker='o', facecolor='k', s=40, alpha=1.0, zorder=103)


    plt.xlabel(r'X [$m$]', fontsize=15, fontweight='bold')
    plt.ylabel(r'Y [$m$]', fontsize=15, fontweight='bold')
    ax.legend(loc=1, prop={'size':15})
    plt.grid(True)
    fig.savefig("gt_maritime_hall_20180720-1644.png", dpi=fig.dpi)
    plt.show(block=True)
コード例 #36
0
ファイル: Molecule.py プロジェクト: MDAnalysis/pyQuteMol
 def __init__(self,filename,istrj = True,coarse_grain=False):
     self.r = 0 # default scaling factor for system
     self.pos = numpy.zeros(3) # center of bounding box
     self.orien = quaternion([0,0,-1,0]) # orientation in space
     self.scaleFactor = 1
     self.idx = None
     self.DirV = []
     self.istrj = istrj
     self.coarse_grain = coarse_grain
     self.clipplane = numpy.array([0.,0.,0.,0,], numpy.float32)
     self.excl = numpy.array([], numpy.int32)
     if not istrj: self.load_pdb(filename)
     else: self.load_trj(filename)
コード例 #37
0
    def readData(self, filename, angle_axis=False, cov=False):

        for row in csv.reader(open(os.path.expanduser(filename), "r"), delimiter=" ", quotechar="|"):
            # print row
            self.atime.append(float(row[0]) / 1000000.00)  # absolute time
            if False != angle_axis:
                self.data.append(
                    quat.quaternion.fromAngleAxis(float(row[4]), [float(row[1]), float(row[2]), float(row[3])])
                )
            else:
                self.data.append(quat.quaternion([float(row[4]), float(row[1]), float(row[2]), float(row[3])]))

            if False != cov:
                matrix = np.array(
                    [
                        [float(row[5]), float(row[6]), float(row[7])],
                        [float(row[8]), float(row[9]), float(row[10])],
                        [float(row[11]), float(row[12]), float(row[13])],
                    ]
                )
                self.cov.append(matrix)

        atime = self.atime
        self.time.append(0.00)

        for i in range(0, len(atime) - 1):
            tbody = float(atime[i + 1]) - float(atime[i])
            self.delta.append(tbody)
            tbody = float(atime[i + 1]) - float(atime[0])
            self.time.append(tbody)

        if len(self.delta) > 1:
            self.delta.append(self.delta[len(self.delta) - 1])
            self.t = mean(self.delta) * r_[0 : len(self.atime)]

        # Convert to np array
        self.atime = np.asarray(self.atime)
        self.time = np.asarray(self.time)
        self.delta = np.asarray(self.delta)
        self.t = np.asarray(self.t)
        self.cov = np.asarray(self.cov)
コード例 #38
0
    def delete(self, index_to_remove):
        """Delete internal data from the index specified in temindex """

        indexes = np.setdiff1d(xrange(len(self.data)), index_to_remove)

        self.atime = self.atime[indexes]
        self.time = self.time[indexes]
        self.delta = self.delta[indexes]
        self.t = self.t[indexes]

        # convert quaternion to array and remove outliers
        dataq = np.asarray(self.data)
        dataq = dataq[indexes]

        # Get back to list of quaternions
        self.data = []
        for q in dataq:
            self.data.append(quat.quaternion([float(q[0]), float(q[1]), float(q[2]), float(q[3])]))

        if len(self.cov) > 0:
            self.cov = self.cov[indexes]
        if len(self.var) > 0:
            self.var = self.var[indexes]
コード例 #39
0
def test_quaternion_multiply(Qs):
    # Check scalar multiplication
    for q in Qs[Qs_finite]:
        assert q * Qs[q_1] == q
    for q in Qs[Qs_finite]:
        assert q * 1.0 == q
        assert q * 1 == q
        assert 1.0 * q == q
        assert 1 * q == q
    for s in [-3, -2.3, -1.2, -1.0, 0.0, 0, 1.0, 1, 1.2, 2.3, 3]:
        for q in Qs[Qs_finite]:
            assert q * s == quaternion.quaternion(s * q.w, s * q.x, s * q.y, s * q.z)
            assert s * q == q * s
    for q in Qs[Qs_finite]:
        assert 0.0 * q == Qs[q_0]
        assert 0.0 * q == q * 0.0

    # Check linearity
    for q1 in Qs[Qs_finite]:
        for q2 in Qs[Qs_finite]:
            for q3 in Qs[Qs_finite]:
                assert allclose(q1*(q2+q3), (q1*q2)+(q1*q3))
                assert allclose((q1+q2)*q3, (q1*q3)+(q2*q3))

    # Check the multiplication table
    for q in [Qs[q_1], Qs[x], Qs[y], Qs[z]]:
        assert Qs[q_1] * q == q
        assert q * Qs[q_1] == q
    assert Qs[x] * Qs[x] == -Qs[q_1]
    assert Qs[x] * Qs[y] == Qs[z]
    assert Qs[x] * Qs[z] == -Qs[y]
    assert Qs[y] * Qs[x] == -Qs[z]
    assert Qs[y] * Qs[y] == -Qs[q_1]
    assert Qs[y] * Qs[z] == Qs[x]
    assert Qs[z] * Qs[x] == Qs[y]
    assert Qs[z] * Qs[y] == -Qs[x]
    assert Qs[z] * Qs[z] == -Qs[q_1]
def decos_trajectories_figure(fig_num, dem_file, reference_trajectory,
        kf_trajectory, frames_trajectory, odo_trajectory,
        mis_orient = quat.quaternion(np.array([1.0,0.0,0.0,0.0])),
        mis_position = [0.00, 0.00, 0.00]):
    ########################
    # Load Terrain DEM
    ########################
    import os
    plydata = PlyData.read(open(os.path.expanduser(dem_file)))

    vertex = plydata['vertex'].data

    [dem_px, dem_py, dem_pz] = (vertex[t] for t in ('x', 'y', 'z'))

    # define grid.
    npts=100
    dem_xi = np.linspace(min(dem_px), max(dem_px), npts)
    dem_yi = np.linspace(min(dem_py), max(dem_py), npts)

    # grid the data.
    dem_zi = griddata(dem_px, dem_py, dem_pz, dem_xi, dem_yi, interp='linear')

    #################################################
    # Misalignment all trajectories wrt to the map
    #################################################
    map_posi_align = [1.00, 5.00, 0.00]
    map_orient_align = quat.quaternion.fromAngleAxis(-25.0 * np.pi/180.0, [0.0, 0.0,1.0])

    matplotlib.rcParams.update({'font.size': 15, 'font.weight': 'bold'})
    fig = plt.figure(fig_num, figsize=(28, 16), dpi=120, facecolor='w', edgecolor='k')
    ax = fig.add_subplot(111)
    #fig, ax = plt.subplots()

    # Display the DEM
    plt.rc('text', usetex=False)# activate latex text rendering
    CS = plt.contour(dem_xi, dem_yi, dem_zi, 20, linewidths=0.5, colors='k')
    CS = plt.contourf(dem_xi, dem_yi, dem_zi, 20, cmap=plt.cm.gray, vmax=abs(dem_zi).max(), vmin=-abs(dem_zi).max())
    #plt.clabel(CS, inline=1, fontsize=10) # number in the contour line

    # plot data points.
    plt.xlim(min(dem_px), max(dem_xi))
    plt.ylim(min(dem_py), max(dem_yi))

    # Color bar of the dem
    cbar = plt.colorbar()  # draw colorbar
    cbar.ax.set_ylabel(r' terrain elevation[$m$] ',  fontsize=25, fontweight='bold')

    # Display Ground Truth trajectory
    from numpy import linalg as la
    ref = np.column_stack((reference_trajectory[:,0][0::10], reference_trajectory[:,1][0::10], reference_trajectory[:,2][0::10]))
    ref[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in ref ]
    ref[:] = [ i + map_posi_align for i in ref ]
    x = ref[:,0]
    y = ref[:,1]
    ax.plot(x, y, marker='D', linestyle='-', lw=2, alpha=0.3, color=[1.0, 1.0, 0.0],
            label='ground truth', zorder=80)

    # Plot all the image frames
    fr = np.column_stack((frames_trajectory[:,0][0::10], frames_trajectory[:,1][0::10], frames_trajectory[:,2][0::10]))
    fr[:] = [(mis_orient * i * mis_orient.conj())[1:4] for i in fr]
    fr[:] = [ i + mis_position for i in fr ]
    fr[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in fr ]
    fr[:] = [ i + map_posi_align for i in fr ]
    fr_x = fr[:,0]
    fr_y = fr[:,1]
    ax.plot(fr_x, fr_y, marker='s', linestyle='-', lw=2, alpha=0.3, color=[0.0, 0.3, 1.0],
            label='slam', zorder=99)

    # Plot the key frames
    kf = np.column_stack((kf_trajectory[:,0], kf_trajectory[:,1], kf_trajectory[:,2]))
    kf[:] = [(mis_orient * i * mis_orient.conj())[1:4] for i in kf]
    kf[:] = [ i + mis_position for i in kf ]
    kf[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in kf ]
    kf[:] = [ i + map_posi_align for i in kf ]
    kf_x = kf[:,0][0::10]
    kf_y = kf[:,1][0::10]
    ax.scatter(kf_x, kf_y, marker='s', facecolor=[0.2,1.0,0.0], edgecolor='b',
            label='keyframes', s=20, alpha=1.0, zorder=100)

    # Pure odometry trajectory
    odo = np.column_stack((odo_trajectory[:,0], odo_trajectory[:,1], odo_trajectory[:,2]))
    odo[:] = [(mis_orient * i * mis_orient.conj())[1:4] for i in odo ]
    odo[:] = [ i + mis_position for i in odo ]
    odo[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in odo ]
    odo[:] = [ i + map_posi_align for i in odo ]
    odo_x = odo[:,0][0::10]
    odo_y = odo[:,1][0::10]
    ax.plot(odo_x, odo_y, marker='h', linestyle='-', lw=2, alpha=0.3, color=[1.0, 0, 0],
            label='odometry', zorder=70)

    import os
    from matplotlib.cbook import get_sample_data
    from matplotlib._png import read_png
    import matplotlib.image as image
    from scipy import ndimage
    from matplotlib.offsetbox import OffsetImage, AnnotationBbox
    fn = get_sample_data(os.getcwd()+"/data/img/exoter.png", asfileobj=False)
    exoter = image.imread(fn)
    exoter = ndimage.rotate(exoter, -120)
    imexoter = OffsetImage(exoter, zoom=0.3)


    ab = AnnotationBbox(imexoter, xy=(x[0], y[0]),
                    xybox=None,
                    xycoords='data',
                    boxcoords="offset points",
                    frameon=False)

    ax.annotate(r'ExoTeR', xy=(x[0], y[0]), xycoords='data',
                            xytext=(-20, -40), textcoords='offset points',
                            fontsize=16)

    ax.annotate(r'Start', xy=(x[0], y[0]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points', fontsize=16,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(x[0], y[0], marker='o', facecolor='k', s=40, alpha=1.0, zorder=103)

    #ax.arrow(x[0], y[0], x[13]-x[0], y[13]-y[0], width=0.01, head_width=0.05,
    #        head_length=0.2, fc='k', ec='k', zorder=104)

    ax.annotate(r'End', xy=(x[x.shape[0]-1], y[y.shape[0]-1]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points',
                            fontsize=16,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(x[x.shape[0]-1], y[y.shape[0]-1], marker='o', facecolor='k', s=40, alpha=1.0, zorder=103)

    ax.add_artist(ab)

    plt.xlabel(r'X [$m$]', fontsize=15, fontweight='bold')
    plt.ylabel(r'Y [$m$]', fontsize=15, fontweight='bold')
    ax.legend(loc=1, prop={'size':15})
    plt.grid(True)
    fig.savefig("decos_trajectories_figure_20140911-1805.png", dpi=fig.dpi)
    plt.show(block=True)
コード例 #41
0
 def RHS(t, y):
     R = quaternion.quaternion(*y)
     return (0.5 * quaternion.quaternion(0.0, *Omega_func(t, R)) * R).components
コード例 #42
0
# grid the data.
zi = griddata(px, py, pz, xi, yi, interp='linear')


#################################################
# Misalignment to the map                       #
#################################################
map_posi_align = [2.00, 8.00, 0.00]
map_orient_align = quat.quaternion.fromAngleAxis(-20.0 * np.pi/180.0, [0.0, 0.0,1.0])

#################################################
# Take the misalignment between both orientations
#################################################
#misalignment = ~odometry_orient.data[1000] * reference_orient.data[1000] #~ is invert operator
misalignment = quat.quaternion(np.array([1.0,0.0,0.0,0.0]))

##########
## PLOT ##
##########

#Position comparison X-Y plane
matplotlib.rcParams.update({'font.size': 30, 'font.weight': 'bold'})
fig = plt.figure(1)
ax = fig.add_subplot(111)

# Display the DEM
plt.rc('text', usetex=False)# activate latex text rendering
CS = plt.contour(xi, yi, zi, 25, linewidths=0.5, colors='k')
CS = plt.contourf(xi, yi, zi, 25, cmap=plt.cm.gray, vmax=abs(zi).max(), vmin=-abs(zi).max())
cbar = plt.colorbar()  # draw colorbar
def decos_dem_figure(fig_num, dem_file, trajectory, pred_mean, kf_trajectory,
        frames_trajectory, mis_orient = quat.quaternion(np.array([1.0,0.0,0.0,0.0])),
        mis_position = [0.00, 0.00, 0.00],
        color_bar='Reds'):

    ########################
    # Load Terrain DEM
    ########################
    import os
    plydata = PlyData.read(open(os.path.expanduser(dem_file)))

    vertex = plydata['vertex'].data

    [dem_px, dem_py, dem_pz] = (vertex[t] for t in ('x', 'y', 'z'))

    # define grid.
    npts=100
    dem_xi = np.linspace(min(dem_px), max(dem_px), npts)
    dem_yi = np.linspace(min(dem_py), max(dem_py), npts)

    # grid the data.
    dem_zi = griddata(dem_px, dem_py, dem_pz, dem_xi, dem_yi, interp='linear')

    #################################################
    # Misalignment to the map                       #
    #################################################
    map_posi_align = [1.00, 5.00, 0.00]
    map_orient_align = quat.quaternion.fromAngleAxis(-25.0 * np.pi/180.0, [0.0, 0.0,1.0])

    matplotlib.rcParams.update({'font.size': 30, 'font.weight': 'bold'})
    fig = plt.figure(fig_num, figsize=(28, 16), dpi=120, facecolor='w', edgecolor='k')
    ax = fig.add_subplot(111)
    #fig, ax = plt.subplots()

    # Display the DEM
    plt.rc('text', usetex=False)# activate latex text rendering
    CS = plt.contour(dem_xi, dem_yi, dem_zi, 20, linewidths=0.5, colors='k')
    CS = plt.contourf(dem_xi, dem_yi, dem_zi, 20, cmap=plt.cm.gray, vmax=abs(dem_zi).max(), vmin=-abs(dem_zi).max())
    #plt.clabel(CS, inline=1, fontsize=10) # number in the contour line

    # plot data points.
    plt.xlim(min(dem_px), max(dem_xi))
    plt.ylim(min(dem_py), max(dem_yi))

    # Display Ground Truth trajectory
    from numpy import linalg as la
    ref = np.column_stack((trajectory[:,0], trajectory[:,1], trajectory[:,2]))
    ref[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in ref ]
    ref[:] = [ i + map_posi_align for i in ref ]
    x = ref[:,0]
    y = ref[:,1]
    sd = la.norm(pred_mean, axis=1)
    points = np.array([x, y]).T.reshape(-1, 1, 2)
    segments = np.concatenate([points[:-1], points[1:]], axis=1)

    from matplotlib.collections import LineCollection
    from matplotlib.colors import ListedColormap, BoundaryNorm
    from matplotlib.colors import LinearSegmentedColormap as lscm

    cmap = plt.get_cmap(color_bar)

    norm = plt.Normalize(0.00, 0.0634491701615)
    lc = LineCollection(segments, cmap=cmap, norm=norm)
    lc.set_array(sd)
    lc.set_linewidth(25)
    lc.set_alpha(0.8)
    plt.gca().add_collection(lc)


    #color bar of the covarianve
    #h_cbar = plt.colorbar(lc)#, orientation='horizontal')
    #h_cbar.ax.set_ylabel(r' odometry error[$m/s$]',  fontsize=25, fontweight='bold')

    # Color bar of the dem
    #cbar = plt.colorbar()  # draw colorbar
    #cbar.ax.set_ylabel(r' terrain elevation[$m$]', fontsize=25, fontweight='bold')

    # Plot all the image frames
    fr = np.column_stack((frames_trajectory[:,0][0::10], frames_trajectory[:,1][0::10], frames_trajectory[:,2][0::10]))
    fr[:] = [(mis_orient * i * mis_orient.conj())[1:4] for i in fr]
    fr[:] = [ i + mis_position for i in fr ]
    fr[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in fr ]
    fr[:] = [ i + map_posi_align for i in fr ]
    fr_x = fr[:,0]
    fr_y = fr[:,1]
    ax.plot(fr_x, fr_y,
            #marker='s',
            linestyle='-', lw=2, alpha=0.5, color=[0.0, 0.3, 1.0],
            label='slam trajectory',
            zorder=99)

    # Plot all the image frames
    ax.scatter(fr_x, fr_y, marker='s', facecolor=[0.0,0.3,1.0], edgecolor='b',
            label='image frames', s=300, alpha=0.2, zorder=99)


    # Plot the key frames
    kf = np.column_stack((kf_trajectory[:,0], kf_trajectory[:,1], kf_trajectory[:,2]))
    kf[:] = [(mis_orient * i * mis_orient.conj())[1:4] for i in kf]
    kf[:] = [ i + mis_position for i in kf ]
    kf[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in kf ]
    kf[:] = [ i + map_posi_align for i in kf ]
    kf_x = kf[:,0]
    kf_y = kf[:,1]
    ax.scatter(kf_x, kf_y, marker='D', facecolor=[0.2,1.0,0.0], edgecolor='b',
            label='keyframes', s=250, alpha=0.8, zorder=100)

    import os
    from matplotlib.cbook import get_sample_data
    from matplotlib._png import read_png
    import matplotlib.image as image
    from scipy import ndimage
    from matplotlib.offsetbox import OffsetImage, AnnotationBbox
    fn = get_sample_data(os.getcwd()+"/data/img/exoter.png", asfileobj=False)
    exoter = image.imread(fn)
    exoter = ndimage.rotate(exoter, -110)
    imexoter = OffsetImage(exoter, zoom=0.3)


    ab = AnnotationBbox(imexoter, xy=(x[2], y[2]),
                    xybox=None,
                    xycoords='data',
                    boxcoords="offset points",
                    frameon=False)

    ax.annotate(r'ExoTeR', xy=(x[2], y[2]), xycoords='data',
                            xytext=(-20, -35), textcoords='offset points',
                            fontsize=30,
                            #arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", lw=2.0)
                            zorder=101,
                            )

    ax.annotate(r'Start', xy=(x[2], y[2]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points',
                            fontsize=30,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(x[2], y[2], marker='o', facecolor='k', s=100, alpha=1.0, zorder=103)

    #ax.arrow(x[0], y[0], x[130]-x[0], y[130]-y[0], width=0.02, head_width=0.07,
    #        head_length=0.1, fc='k', ec='k', zorder=104)

    # End sign
    ax.annotate(r'End', xy=(fr_x[fr_x.shape[0]-1], fr_y[fr_y.shape[0]-1]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points',
                            fontsize=30,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(fr_x[fr_x.shape[0]-1], fr_y[fr_y.shape[0]-1], marker='o',
            facecolor='k', s=100, alpha=1.0, zorder=103)

    ax.add_artist(ab)

    plt.xlabel(r'X [$m$]', fontsize=35, fontweight='bold')
    plt.ylabel(r'Y [$m$]', fontsize=35, fontweight='bold')
    ax.legend(loc=2, prop={'size':30})
    #plt.axis('equal')
    plt.grid(True)
    fig.savefig("decos_adaptive_slam_dem_20140911-1805.png", dpi=fig.dpi)
    plt.show(block=True)
コード例 #44
0
skidodoPos.readData('../data/20131022_motocross_field/20131022-1812/20131207-1929/data/skid_odometry_position.0.data', cov=True)
skidodoPos.eigenValues()

# GPS/Vicon reference from Ground Truth
refPos = data.ThreeData()
refPos.readData('../data/20131022_motocross_field/20131022-1812/20131207-1929/data/reference_position.0.data', cov=False)
refPos.eigenValues()

#Odometry , Skid Odometry and GPS values(X-Y Axis Motocross Field)
matplotlib.rcParams.update({'font.size': 30, 'font.weight': 'bold'})
fig = plt.figure(1)
ax = fig.add_subplot(111)

plt.rc('text', usetex=False)# activate latex text rendering

rot = quat.quaternion([0.99, 0.0, -0.0087, 0.00])
M = rot.toMatrix()
xposition=[]
yposition=[]
for i in range(0,len(odoPos.data)):
    x = odoPos.data[i][0]
    y = odoPos.data[i][1]
    z = odoPos.data[i][2]
    vec = dot(M,[x,y,z])
    xposition.append(vec[0])
    yposition.append(vec[1])

xposition = xposition[0::80]
yposition = yposition[0::80]

ax.plot(xposition, yposition, marker='o', linestyle='-.', label= "Weighted Jacobian Odometry", color=[0.0,0.8,0], alpha=0.5, lw=2)
コード例 #45
0
ododynpos.append(np.array(odoPosDyn.getAxis(0)))
ododynpos.append(np.array(odoPosDyn.getAxis(1)))
ododynpos.append(np.array(odoPosDyn.getAxis(2)))

skidodoPos = data.ThreeData()
skidodoPos.readData('/home/jhidalgocarrio/esa-npi/dev/bundles/asguard/logs/20131206-2344/data/skid_odometry_position.0.data', cov=True)
skidodoPos.eigenValues()
skidpos=[]
skidpos.append(np.array(skidodoPos.getAxis(0)))
skidpos.append(np.array(skidodoPos.getAxis(1)))
skidpos.append(np.array(skidodoPos.getAxis(2)))

refPos = data.ThreeData()
refPos.readData('/home/jhidalgocarrio/esa-npi/dev/bundles/asguard/logs/20131206-2344/data/reference_position.0.data', cov=False)
refPos.eigenValues()
rot = quat.quaternion([0.819, -0.014, 0.01001, -0.5735]) #Align reference trajectory
M = rot.toMatrix()
xrefpos = []
yrefpos = []
zrefpos = []
for i in range(0,len(refPos.data)):
    x = refPos.data[i][0]
    y = refPos.data[i][1]
    z = refPos.data[i][2]
    vec = dot(M,[x,y,z])
    xrefpos.append(vec[0])
    yrefpos.append(vec[1])
    zrefpos.append(vec[2])

refpos=[]
refpos.append(np.array(xrefpos))
コード例 #46
0
# Odometry Pose
pureodoPos = data.ThreeData()
pureodoPos.readData('~/npi/data/20130415_asguard_test_track/20131206-2243/data/odometry_position.0.data', cov=True)
pureodoPos.eigenValues()

# Skid Odometry Pose
skidodoPos = data.ThreeData()
skidodoPos.readData('~/npi/data/20130415_asguard_test_track/20131206-2159/data/skid_odometry_position.0.data', cov=True)
skidodoPos.eigenValues()

#Odometry , Skid Odometry and GPS values(X-Y Axis Sand Field)
matplotlib.rcParams.update({'font.size': 30, 'font.weight': 'bold'})
fig = plt.figure(1, figsize=(28, 16), dpi=120, facecolor='w', edgecolor='k')
ax = fig.add_subplot(111)

rot = quat.quaternion([0.99, 0.00, 0.0, 0.0261])
M = rot.toMatrix()
xposition = []
yposition = []

for i in range(0,len(odoPos.data)):
    x = odoPos.data[i][0]
    y = odoPos.data[i][1]
    z = odoPos.data[i][2]
    vec = dot(M,[x,y,z])
    xposition.append(vec[0])
    yposition.append(vec[1])

xposition = xposition[0::50]
yposition = yposition[0::50]
コード例 #47
0
ファイル: script.py プロジェクト: jflamant/quaternion
#!/usr/bin/env python

from __future__ import print_function, division, absolute_import
import sys
import numpy as np
import quaternion
from numpy import *


eps = np.finfo(float).eps


rot_mat_eps = 200*eps


R1 = np.array([quaternion.quaternion(0, -math.sqrt(0.5), 0, -math.sqrt(0.5))])
print(R1)
print(quaternion.as_rotation_matrix(R1))
R2 = quaternion.from_rotation_matrix(quaternion.as_rotation_matrix(R1))
print(R2)
d = quaternion.rotation_intrinsic_distance(R1[0], R2[0])
print(d)
print()
sys.stdout.flush()
sys.stderr.flush()
assert d < rot_mat_eps, (R1, R2, d)  # Can't use allclose here; we don't care about rotor sign
bag = rosbag.Bag(os.path.expanduser(path_reference_position_file))
pose_time = []
pose_pos = []
pose_orient = []
for topic, msg, t in bag.read_messages(topics=['/dory/odom']):
        print "-----"
        print topic
        print "-----"
        print msg
        print "-----"
        print t
        pose_time.append(t.to_time())
        position = msg.pose.pose.position
        orientation = msg.pose.pose.orientation
        pose_pos.append(np.array([position.x, position.y, position.z]))
        pose_orient.append(quat.quaternion([orientation.w, orientation.x, orientation.y, orientation.z]))

pose_time = np.asarray(pose_time)
pose_pos = np.asarray(pose_pos)

april_tag_pos=[]
april_tag_orient=[]
for topic, msg, t in bag.read_messages(topics=['/tf_static']):
    if msg.transforms[0].child_frame_id == 'april_tag_link':
        print "-----"
        print msg
        print "-----"
        print t
        april_tag_pos = np.array([msg.transforms[0].transform.translation.x,
                msg.transforms[0].transform.translation.y,
                msg.transforms[0].transform.translation.z])
コード例 #49
0
def test_quaternion_power(Qs):
    import math
    qpower_precision = 4*eps

    # Test equivalence between scalar and real-quaternion exponentiation
    for b in [0, 0.0, 1, 1.0, 2, 2.0, 5.6]:
        for e in [0, 0.0, 1, 1.0, 2, 2.0, 4.5]:
            be = np.quaternion(b**e, 0, 0, 0)
            assert allclose(be, np.quaternion(b, 0, 0, 0)**np.quaternion(e, 0, 0, 0), rtol=qpower_precision)
            assert allclose(be, b**np.quaternion(e, 0, 0, 0), rtol=qpower_precision)
            assert allclose(be, np.quaternion(b, 0, 0, 0)**e, rtol=qpower_precision)
    for q in [-3*quaternion.one, -2*quaternion.one, -quaternion.one, quaternion.zero, quaternion.one, 3*quaternion.one]:
        for s in [-3, -2.3, -1.2, -1.0, 1.0, 1, 1.2, 2.3, 3]:
            for t in [-3, -2.3, -1.2, -1.0, 1.0, 1, 1.2, 2.3, 3]:
                assert allclose((s*t)**q, (s**q)*(t**q), rtol=2*qpower_precision)

    # Test basic integer-exponent and additive-exponent properties
    for q in Qs[Qs_finitenonzero]:
        assert allclose(q ** 0, np.quaternion(1, 0, 0, 0), rtol=qpower_precision)
        assert allclose(q ** 0.0, np.quaternion(1, 0, 0, 0), rtol=qpower_precision)
        assert allclose(q ** np.quaternion(0, 0, 0, 0), np.quaternion(1, 0, 0, 0), rtol=qpower_precision)
        assert allclose(((q ** 0.5) * (q ** 0.5)), q, rtol=qpower_precision)
        assert allclose(q ** 1.0, q, rtol=qpower_precision)
        assert allclose(q ** 1, q, rtol=qpower_precision)
        assert allclose(q ** np.quaternion(1, 0, 0, 0), q, rtol=qpower_precision)
        assert allclose(q ** 2.0, q * q, rtol=qpower_precision)
        assert allclose(q ** 2, q * q, rtol=qpower_precision)
        assert allclose(q ** np.quaternion(2, 0, 0, 0), q * q, rtol=qpower_precision)
        assert allclose(q ** 3, q * q * q, rtol=qpower_precision)
        assert allclose(q ** -1, q.inverse(), rtol=qpower_precision)
        assert allclose(q ** -1.0, q.inverse(), rtol=qpower_precision)
        for s in [-3, -2.3, -1.2, -1.0, 1.0, 1, 1.2, 2.3, 3]:
            for t in [-3, -2.3, -1.2, -1.0, 1.0, 1, 1.2, 2.3, 3]:
                assert allclose(q**(s+t), (q**s)*(q**t), rtol=2*qpower_precision)
                assert allclose(q**(s-t), (q**s)/(q**t), rtol=2*qpower_precision)

    # Check that exp(q) is the same as e**q
    for q in Qs[Qs_finitenonzero]:
        assert allclose(q.exp(), math.e**q, rtol=qpower_precision)
        for s in [0, 0., 1.0, 1, 1.2, 2.3, 3]:
            for t in [0, 0., 1.0, 1, 1.2, 2.3, 3]:
                assert allclose((s*t)**q, (s**q)*(t**q), rtol=2*qpower_precision)
        for s in [1.0, 1, 1.2, 2.3, 3]:
            assert allclose(s**q, (q*math.log(s)).exp(), rtol=qpower_precision)

    qinverse_precision = 2*eps
    for q in Qs[Qs_finitenonzero]:
        assert allclose((q ** -1.0) * q, Qs[q_1], rtol=qinverse_precision)
    for q in Qs[Qs_finitenonzero]:
        assert allclose((q ** -1) * q, Qs[q_1], rtol=qinverse_precision)
    for q in Qs[Qs_finitenonzero]:
        assert allclose((q ** Qs[q_1]), q, rtol=qpower_precision)
    strict_assert(False)  # Try more edge cases

    for q in [quaternion.x, quaternion.y, quaternion.z]:
        assert allclose(quaternion.quaternion(math.exp(-math.pi/2), 0, 0, 0),
                        q**q, rtol=qpower_precision)
    assert allclose(quaternion.quaternion(math.cos(math.pi/2), 0, 0, math.sin(math.pi/2)),
                    quaternion.x**quaternion.y, rtol=qpower_precision)
    assert allclose(quaternion.quaternion(math.cos(math.pi/2), 0, -math.sin(math.pi/2), 0),
                    quaternion.x**quaternion.z, rtol=qpower_precision)
    assert allclose(quaternion.quaternion(math.cos(math.pi/2), 0, 0, -math.sin(math.pi/2)),
                    quaternion.y**quaternion.x, rtol=qpower_precision)
    assert allclose(quaternion.quaternion(math.cos(math.pi/2), math.sin(math.pi/2), 0, 0),
                    quaternion.y**quaternion.z, rtol=qpower_precision)
    assert allclose(quaternion.quaternion(math.cos(math.pi/2), 0, math.sin(math.pi/2), 0),
                    quaternion.z**quaternion.x, rtol=qpower_precision)
    assert allclose(quaternion.quaternion(math.cos(math.pi/2), -math.sin(math.pi/2), 0, 0),
                    quaternion.z**quaternion.y, rtol=qpower_precision)
コード例 #50
0
def Qs():
    q_nan1 = quaternion.quaternion(np.nan, 0., 0., 0.)
    q_inf1 = quaternion.quaternion(np.inf, 0., 0., 0.)
    q_minf1 = quaternion.quaternion(-np.inf, 0., 0., 0.)
    q_0 = quaternion.quaternion(0., 0., 0., 0.)
    q_1 = quaternion.quaternion(1., 0., 0., 0.)
    x = quaternion.quaternion(0., 1., 0., 0.)
    y = quaternion.quaternion(0., 0., 1., 0.)
    z = quaternion.quaternion(0., 0., 0., 1.)
    Q = quaternion.quaternion(1.1, 2.2, 3.3, 4.4)
    Qneg = quaternion.quaternion(-1.1, -2.2, -3.3, -4.4)
    Qbar = quaternion.quaternion(1.1, -2.2, -3.3, -4.4)
    Qnormalized = quaternion.quaternion(0.18257418583505539, 0.36514837167011077,
                                        0.54772255750516607, 0.73029674334022154)
    Qlog = quaternion.quaternion(1.7959088706354, 0.515190292664085,
                                 0.772785438996128, 1.03038058532817)
    Qexp = quaternion.quaternion(2.81211398529184, -0.392521193481878,
                                 -0.588781790222817, -0.785042386963756)
    return np.array([q_nan1, q_inf1, q_minf1, q_0, q_1, x, y, z, Q, Qneg, Qbar, Qnormalized, Qlog, Qexp],
                    dtype=np.quaternion)
コード例 #51
0
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

ax.grid(True)
ax.legend(prop={'size':25})
plt.ylabel(r'Position [$m$]')
plt.xlabel(r'Position [$s$]')
ax.set_xlim([-3,60])
ax.set_ylim([-10,10])
ax.set_zlim([0,5])
plt.show(block=False)


#Odometry , Skid Odometry and GPS values(X-Y Axis Sand Field)
matplotlib.rcParams.update({'font.size': 25})
plt.figure(1)
rot = quat.quaternion([0.819, -0.014, 0.01001, -0.5735])
M = rot.toMatrix()
xposition = []
yposition = []

for i in range(0,len(refPos.data)):
    x = refPos.data[i][0]
    y = refPos.data[i][1]
    z = refPos.data[i][2]
    vec = dot(M,[x,y,z])
    xposition.append(vec[0])
    yposition.append(vec[1])

plt.plot(xposition, yposition, marker='D', linestyle='--', label="GPS", color=[0.5,0,0], alpha=0.5, lw=2)
plt.scatter(xposition[0], yposition[0], marker='D', color=[0,0.5,0.5], alpha=0.5, lw=20)
plt.scatter(xposition[len(xposition)-1], yposition[len(yposition)-1], marker='D', color=[0.5,0,0.5], alpha=0.5, lw=20)
def decos_odometry_dem_figure(fig_num, dem_file,
        threed_odometry_trajectory, skid_odometry_trajectory, reference_trajectory,
        mis_orient_threed = quat.quaternion(np.array([1.0,0.0,0.0,0.0])), mis_position_threed = [0.00, 0.00, 0.00],
        mis_orient_skid = quat.quaternion(np.array([1.0,0.0,0.0,0.0])), mis_position_skid = [0.00, 0.00, 0.00]):

    ########################
    # Load Terrain DEM
    ########################
    import os
    plydata = PlyData.read(open(os.path.expanduser(dem_file)))

    vertex = plydata['vertex'].data

    [dem_px, dem_py, dem_pz] = (vertex[t] for t in ('x', 'y', 'z'))

    # define grid.
    npts=100
    dem_xi = np.linspace(min(dem_px), max(dem_px), npts)
    dem_yi = np.linspace(min(dem_py), max(dem_py), npts)

    # grid the data.
    dem_zi = griddata(dem_px, dem_py, dem_pz, dem_xi, dem_yi, interp='linear')

    #################################################
    # Misalignment to the map                       #
    #################################################
    map_posi_align = [2.00, 9.00, 0.00]
    map_orient_align = quat.quaternion.fromAngleAxis(-20.0 * np.pi/180.0, [0.0, 0.0,1.0])

    matplotlib.rcParams.update({'font.size': 30, 'font.weight': 'bold'})
    fig = plt.figure(fig_num, figsize=(28, 16), dpi=120, facecolor='w', edgecolor='k')
    ax = fig.add_subplot(111)
    #fig, ax = plt.subplots()

    # Display the DEM
    plt.rc('text', usetex=False)# activate latex text rendering
    CS = plt.contour(dem_xi, dem_yi, dem_zi, 20, linewidths=0.5, colors='k')
    CS = plt.contourf(dem_xi, dem_yi, dem_zi, 20, cmap=plt.cm.gray, vmax=abs(dem_zi).max(), vmin=-abs(dem_zi).max())
    #plt.clabel(CS, inline=1, fontsize=10) # number in the contour line

    # plot data points.
    plt.xlim(min(dem_px), max(dem_xi))
    plt.ylim(min(dem_py), max(dem_yi))

    # Color bar of the dem
    cbar = plt.colorbar()  # draw colorbar
    cbar.ax.set_ylabel(r' terrain elevation [$m$]', fontsize=25, fontweight='bold')

    # Plot 3d odometry trajectory
    t_odo = np.column_stack((threed_odometry_trajectory[:,0][0::10],
        threed_odometry_trajectory[:,1][0::10],
        threed_odometry_trajectory[:,2][0::10]))
    t_odo[:] = [(mis_orient_threed * i * mis_orient_threed.conj())[1:4] for i in t_odo]
    t_odo[:] = [ i + mis_position_threed for i in t_odo ]
    t_odo[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in t_odo ]
    t_odo[:] = [ i + map_posi_align for i in t_odo ]
    x = t_odo[:,0]
    y = t_odo[:,1]
    ax.plot(x, y, marker='o', linestyle='-.', label="3d odometry", color=[0.3,1.0,0.4], lw=5)

    # Plot skid odometry
    skid = np.column_stack((skid_odometry_trajectory[:,0][0::10],
        skid_odometry_trajectory[:,1][0::10],
        skid_odometry_trajectory[:,2][0::10]))
    skid[:] = [(mis_orient_skid * i * mis_orient_skid.conj())[1:4] for i in skid]
    skid[:] = [ i + mis_position_skid for i in skid ]
    skid[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in skid ]
    skid[:] = [ i + map_posi_align for i in skid ]
    x = skid[:,0]
    y = skid[:,1]
    ax.plot(x, y, marker='x', linestyle='--', label="skid odometry", color=[0,0.5,1], lw=5)

    # Display Ground Truth trajectory
    ref = np.column_stack((reference_trajectory[:,0][0::10], reference_trajectory[:,1][0::10], reference_trajectory[:,2][0::10]))
    ref[:] = [(map_orient_align * i * map_orient_align.conj())[1:4] for i in ref ]
    ref[:] = [ i + map_posi_align for i in ref ]
    x = ref[:,0]
    y = ref[:,1]
    ax.plot(x, y, marker='D', linestyle='--', label="reference trajectory", color=[0.5,0,0], alpha=0.5, lw=5)


    import os
    from matplotlib.cbook import get_sample_data
    from matplotlib._png import read_png
    import matplotlib.image as image
    from scipy import ndimage
    from matplotlib.offsetbox import OffsetImage, AnnotationBbox
    fn = get_sample_data(os.getcwd()+"/data/img/exoter.png", asfileobj=False)
    exoter = image.imread(fn)
    exoter = ndimage.rotate(exoter, -120)
    imexoter = OffsetImage(exoter, zoom=0.3)


    ab = AnnotationBbox(imexoter, xy=(x[0], y[0]),
                    xybox=None,
                    xycoords='data',
                    boxcoords="offset points",
                    frameon=False)

    ax.annotate(r'ExoTeR', xy=(x[0], y[0]), xycoords='data',
                            xytext=(-30, -40), textcoords='offset points',
                            fontsize=30,
                            #arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", lw=2.0)
                            zorder=101
                            )

    ax.annotate(r'Start', xy=(x[0], y[0]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points',
                            fontsize=30,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(x[0], y[0], marker='o', facecolor='k', s=100, alpha=1.0, zorder=103)

    #ax.arrow(x[0], y[0], x[13]-x[0], y[13]-y[0], width=0.02, head_width=0.1,
    #        head_length=0.05, fc='k', ec='k', zorder=104)

    # End sign
    ax.annotate(r'End', xy=(x[x.shape[0]-1], y[y.shape[0]-1]), xycoords='data',
                            xytext=(-5, 5), textcoords='offset points',
                            fontsize=30,
                            horizontalalignment='left',
                            verticalalignment='bottom',
                            zorder=101
                            )
    ax.scatter(x[x.shape[0]-1], y[y.shape[0]-1], marker='o', facecolor='k', s=100, alpha=1.0, zorder=103)

    ax.add_artist(ab)

    plt.xlabel(r'X [$m$]', fontsize=35, fontweight='bold')
    plt.ylabel(r'Y [$m$]', fontsize=35, fontweight='bold')
    ax.legend(loc=2, prop={'size':30})
    #leg = ax.legend(loc=1, prop={'size':30}, fancybox=True)
    #leg.get_frame().set_alpha(0.5)
    #plt.axis('equal')
    plt.grid(True)
    fig.savefig("decos_odometry_comparison_20140911-1805.pdf", dpi=fig.dpi)
    plt.show(block=False)
コード例 #53
0
xposition = odoPos.getAxis(0)[0::50]
yposition = odoPos.getAxis(1)[0::50]
ax.plot(xposition, yposition, marker='o', linestyle='-.', label= "3D odometry", color=[0.0,0.8,0], alpha=0.5, lw=2)


xposition = pureodoPos.getAxis(0)[0::50]
yposition = pureodoPos.getAxis(1)[0::50]
ax.plot(xposition, yposition, marker='x', linestyle='--', label="contact point odometry", color=[0.3,0.2,0.4], alpha=0.5, lw=2)


xposition = skidodoPos.getAxis(0)[0::50]
yposition = skidodoPos.getAxis(1)[0::50]
ax.plot(xposition, yposition, marker='^', linestyle='-', label="skid odometry", color=[0,0.5,1], lw=2)

rot = quat.quaternion([0.819, -0.014, 0.01001, -0.5735])
M = rot.toMatrix()
xposition = []
yposition = []

for i in range(0,len(refPos.data)):
    x = refPos.data[i][0]
    y = refPos.data[i][1]
    z = refPos.data[i][2]
    vec = dot(M,[x,y,z])
    xposition.append(vec[0])
    yposition.append(vec[1])

xposition = xposition[0::50]
yposition = yposition[0::50]