clf() for thera in all_ra: plot_onespot(np.array([thera, newspot[1]]), sadlc) savefig('Chorillos_newspot.png') ####now with TOD fech=1. # Hz deltaaz=30 angspeed= 1. #deg/s nsw = 100 #ptg = create_sweeping_pointings(spot_bicep2, 24., 1./fech, angspeed, deltaaz, nsw, 0, 0, # date_obs = '2016-01-01 00:00:00', latitude=domec[0], longitude=domec[1]) ptg = create_sweeping_pointings(spot_bicep2, 24., 1./fech, angspeed, deltaaz, nsw, 0, 0, date_obs = '2016-01-01 00:00:00', latitude=sadlc[0], longitude=sadlc[1]) ok = ptg.elevation > 30 fractime = ok.sum()/len(ok)*100 ptg = ptg[ptg.elevation > 30] clf() subplot(3,1,1) plot(ptg.azimuth, ptg.elevation) subplot(3,1,2) plot(ptg.time, ptg.azimuth) subplot(3,1,3) plot(ptg.time, ptg.elevation) clf() subplot(2,2,1) title('Equatorial')
# parameters nside = 256 racenter = 0.0 # deg deccenter = -57.0 # deg angspeed = 1 # deg/sec delta_az = 15. # deg angspeed_psi = 0.1 # deg/sec maxpsi = 45. # deg nsweeps_el = 300 duration = 24 # hours ts = 60 # seconds # get the sampling model np.random.seed(0) sampling = create_sweeping_pointings([racenter, deccenter], duration, ts, angspeed, delta_az, nsweeps_el, angspeed_psi, maxpsi) scene = QubicScene(nside) # get the acquisition model acquisition = QubicAcquisition(150, sampling, scene, synthbeam_fraction=0.99, detector_tau=0.01, detector_nep=1.e-17, detector_fknee=1., detector_fslope=1) # simulate the timeline tod, x0_convolved = acquisition.get_observation(x0,
fslope = 1 ncorr = 10 # observation model np.random.seed(0) racenter = 0.0 deccenter = -57.0 angspeed = 1 # deg/sec delta_az = 15. angspeed_psi = 0.1 maxpsi = 45. nsweeps_el = 300 duration = 24 # hours ts = 20 # seconds sampling = create_sweeping_pointings( [racenter, deccenter], duration, ts, angspeed, delta_az, nsweeps_el, angspeed_psi, maxpsi) # acquisition model acq = QubicAcquisition(150, sampling, kind='I', synthbeam_fraction=0.99, detector_sigma=sigma, detector_fknee=fknee, detector_fslope=fslope, detector_ncorr=ncorr) C = acq.get_convolution_peak_operator() P = acq.get_projection_operator() H = P * C # produce the Time-Ordered data y = H(x0) # noise psd = _gaussian_psd_1f(len(acq.sampling), sigma=sigma, fknee=fknee,
angspeed = 1 # deg/sec delta_az = 20. # deg angspeed_psi = 0.1 # deg/sec maxpsi = 45. # deg nsweeps_el = 300 duration = 24. # hours ts = duration*3600/2**23 # seconds Chosen in order to have a power of 2 in center = equ2gal(racenter, deccenter) ####### Create some sampling center = equ2gal(racenter, deccenter) sadlc = np.array([-24.18947, -66.472016]) sampling = create_sweeping_pointings( [racenter, deccenter], duration, ts*10, angspeed, delta_az, nsweeps_el, angspeed_psi, maxpsi, latitude=sadlc[0], longitude=sadlc[1]) ok = np.abs(sampling.elevation-50)<20 samplingok = sampling[ok] samplingok.time = 3600*(((samplingok.time/3600 +36) % 24)-12) clf() subplot(2,1,1) plot(samplingok.time/3600, samplingok.azimuth,',') xlabel('Time [Hours]') ylabel('Azimuth [Deg.]') subplot(2,1,2) plot(samplingok.time/3600, samplingok.elevation,',') xlabel('Time [Hours]')