コード例 #1
0
ファイル: ForegroundsSED.py プロジェクト: mwrightqub/qubic
def noise_qss(dictionaries, sky_configuration, coverages, realizations, verbose = False):
	
	"""
	Assume all dictionaries have the same 'effective_duration' and same 'nf_recon'


	"""

	##### Getting FastSimulator output maps
	noise = np.zeros((len(dictionaries), realizations, dictionaries[0]['nf_recon'], 12 * dictionaries[0]['nside']**2,3))

	QubicSkyObject = []
	for ic, idict in enumerate(dictionaries):

		QubicSkyObject.append(qss.Qubic_sky(sky_configuration, idict))
		if verbose: print(type(QubicSkyObject[ic]))

		for i in range(realizations):

			if verbose: print(type(coverages[ic]))
			
			noise[ic, i, ...], _ = \
				QubicSkyObject[ic].get_partial_sky_maps_withnoise(spatial_noise=False, coverage = coverages[ic], 
															noise_only = True, Nyears = idict['effective_duration'],
															verbose = verbose)        
			if verbose: print('=== Done interation #{} ===='.format(i+1))
	
	return noise
コード例 #2
0
ファイル: ForegroundsSED.py プロジェクト: mwrightqub/qubic
def foreground_signal(dictionaries, sky_configuration, sky = 'T',
	seed = None, verbose = False):
	
	"""
	Averaging manually the maps into a band if nf_sub != nfrecon, otherwise, foreground are computed 
		in nf_recon sub-bands


	Assumes . dictionaries[:]['nf_sub'] == dictionaries[:]['nf_recon']
			. all regions and frequencies uses same sky configuration. 

	Parameters: 
		dictionaries: 
			array of dictionaries. #dicts = #regions + #bands_needed
		sky_configuration:
			dictionary with PySM format to build foregrounds
		sky: 
			'T' or 'P' for temperature or polarization study
		seed: 
			fix seed for simulations
	"""

	# Generate foregrounds
	##### QubicSkySim instanciation
	seed = seed

	QubicSkyObject = []
	foreground_maps = np.zeros((len(dictionaries), dictionaries[0]['nf_recon'], 12 * dictionaries[0]['nside'] ** 2, 3))
	for ic, idict in enumerate(dictionaries):

		QubicSkyObject.append(qss.Qubic_sky(sky_configuration, idict))

		if idict['nf_sub'] != idict['nf_recon']:
			_, nus_edge_in, nus_in, _, _, _ = qubic.compute_freq(idict['filter_nu'] / 1e9, 
														   idict['nf_sub'],
														   idict['filter_relative_bandwidth'])
			_, nus_edge_out, nus_out, _, _, _ = qubic.compute_freq(idict['filter_nu'] / 1e9,  
																   idict['nf_recon'],
																   idict['filter_relative_bandwidth'])
	
			if verbose: print('Computing maps averaging')
			# Generate convolved sky of dust without noise 
			dust_map_in = QubicSkyObject[ic].get_fullsky_convolved_maps(FWHMdeg = None, verbose = False)
			if verbose: print('=== Done {} map ===='.format(idict['filter_nu'] / 1e9, regions[ic//len(regions)][0]))
		
			for i in range(idict['nf_recon']):
				inband = (nus_in > nus_edge_out[i]) & (nus_in < nus_edge_out[i + 1])
				foreground_maps[ic, ...] = np.mean(dust_map_in[inband, ...], axis=0)    

		elif idict['nf_sub'] == idict['nf_recon']:
			# Now averaging maps into reconstruction sub-bands maps
			foreground_maps[ic] = QubicSkyObject[ic].get_fullsky_convolved_maps(FWHMdeg = None, verbose = False)

	return foreground_maps
コード例 #3
0
def run_mc(nbmc,
           Namaster,
           d,
           signoise,
           cov,
           effective_variance_invcov,
           verbose=False,
           clnoise=None):
    ell_bins, b = Namaster.get_binning(d['nside'])
    mask_apo = Namaster.mask_apo
    okpix = cov > (np.max(cov) * 0.1)

    myd = d.copy()
    myd['nf_sub'] = 1
    seed = np.random.randint(1, 100000)
    sky_config = {'cmb': seed}
    Qubic_sky = qss.Qubic_sky(sky_config, myd)

    w = None
    cl_noise_qubic = np.zeros((nbmc, len(ell_bins), 4))
    print('        Starting MC')
    for imc in range(nbmc):
        t0 = time.time()
        qubicnoiseA = Qubic_sky.create_noise_maps(
            signoise,
            cov,
            effective_variance_invcov=effective_variance_invcov,
            clnoise=clnoise)
        qubicnoiseB = Qubic_sky.create_noise_maps(
            signoise,
            cov,
            effective_variance_invcov=effective_variance_invcov,
            clnoise=clnoise)

        ### Compute Spectra:
        # Noise Only
        if verbose: print('   - QUBIC Noise maps')
        leff, cl_noise_qubic[imc, :, :], w = Namaster.get_spectra(
            qubicnoiseA.T,
            map2=qubicnoiseB.T,
            purify_e=False,
            purify_b=True,
            w=w,
            verbose=False,
            beam_correction=True)
        t1 = time.time()
        print(
            '             Monte-Carlo: Iteration {0:} over {1:} done in {2:5.2f} sec'
            .format(imc, nbmc, t1 - t0))

    # average MC results
    mcl_noise_qubic = np.mean(cl_noise_qubic, axis=0)
    scl_noise_qubic = np.std(cl_noise_qubic, axis=0)
    return leff, mcl_noise_qubic, scl_noise_qubic
コード例 #4
0
if config not in ['FI150', 'FI220']:
    raise ValueError('The config should be FI150 or FI220.')

d['filter_nu'] = int(config[-3:]) * 1e9

# Central frequencies and FWHM of each band
_, _, nus, _, _, _ = compute_freq(int(config[-3:]), nbands)
print('nus:', nus)
fwhms = [d['synthbeam_peak150_fwhm'] * 150 / nu for nu in nus]
print('fwhms', fwhms)

# Input sky
seed = 42
# sky_config = {'dust': 'd1', 'cmb':seed, 'synchrotron':'s1'}
sky_config = {'dust': 'd1'}
Qubic_sky = qss.Qubic_sky(sky_config, d)
inputmaps = Qubic_sky.get_fullsky_convolved_maps(FWHMdeg=None, verbose=True)

rnd_name = qss.random_string(10)

# ================== Make maps =============================
# Getting noise realisations with FastSimulator
nreals = 4
npix = 12 * d['nside']**2
noisemaps = np.zeros((nreals, nbands, npix, 3))
Nyears = 3.
print('Nyears:', Nyears)

# qubic_coverage = np.load('/pbs/home/l/lmousset/libs/qubic/qubic/scripts/Spectroimagery_paper/maps/'
#                          'coverage_nfsub15_nptgs10000_qubicpatch.npy')
コード例 #5
0
def generate_cmb_dust_maps(dico_fast_simulator,
                           coverage,
                           n_years,
                           noise_profile,
                           nunu,
                           sc,
                           seed=None,
                           save_maps=False,
                           return_maps=True,
                           dust_only=False,
                           fwhm_gen=None,
                           iib=True,
                           noise_covcut=None):
    """
    Save CMB+Dust maps to FITS image format for later use, and/or return them immediately.

    :param dico_fast_simulator: dictionary for FastSimulator at the desired frequency (150 or 220)
    :param coverage: the sky coverage
    :param int n_years: number of integration years
    :param bool noise_profile: include noise profile (inhomogeneity)
    :param bool nunu: include noise frequency correlations
    :param bool sc: include noise spatial correlations
    :param seed: seed for the map generation (if None, a random seed is taken)
    :param bool|None save_maps: save maps in the FITS format (warning: check code first!)
    :param bool|None return_maps: whether the function has to return the generated maps
    :param bool|None dust_only: generate sky maps containing only dust (no cmb)
    :param float|None fwhm_gen: smooth maps to this fwhm during generation
    :param bool iib: integrate simulated maps into output bands
    :param float|None noise_covcut: coverage cut when generating noise maps

    :return: cmb+dust maps with noise, cmb+dust noiseless, noise only maps
    """
    if seed is None:
        seed = np.random.randint(1000000)
    if dust_only:
        sky_config = {
            'dust': 'd0'
        }  # see d0 in https://pysm3.readthedocs.io/en/latest/models.html
    else:
        sky_config = {'dust': 'd0', 'cmb': seed}
    qubic_sky = Qss.Qubic_sky(sky_config, dico_fast_simulator)

    if noise_covcut is None and coverage is not None:
        x, n = find_mantissa_exponent(np.min(coverage[coverage > 0]), 10)
        noise_covcut = np.floor(x * 10) / 10**(n + 1)
    if coverage is None:  # maps are full-sky
        coverage = np.ones(hp.nside2npix(dico_fast_simulator['nside']))
        noise_covcut = 0.1  # arbitrary but None would raise an error in the FastSimulator

    cmb_dust, cmb_dust_noiseless, cmb_dust_noise_only, coverage_eff = \
        qubic_sky.get_partial_sky_maps_withnoise(coverage=coverage,
                                                 Nyears=n_years,
                                                 noise_profile=noise_profile,  # noise inhomogeneity
                                                 nunu_correlation=nunu,  # noise frequency correlations
                                                 spatial_noise=sc,  # noise spatial correlations
                                                 verbose=False,
                                                 seed=None,
                                                 FWHMdeg=fwhm_gen,
                                                 integrate_into_band=iib,
                                                 noise_covcut=noise_covcut,
                                                 )
    if save_maps:
        save_dir = "/media/simon/CLE32/qubic/maps/"
        if noise_profile:
            save_dir += "with_noise_profile/"
        else:
            save_dir += "no_noise_profile/"
        save_dir += "{:d}ghz/".format(
            int(dico_fast_simulator['filter_nu'] / 1e9))
        save_dir += "{}/".format(seed)
        try:
            os.mkdir(save_dir)
        except FileExistsError:
            pass

        common_fmt = "{}bands_{}y"  # .format(band, nsub, nyears, seed)
        common = common_fmt.format(dico_fast_simulator['nf_recon'], n_years)

        hdu_cmb_dust = fits.PrimaryHDU(cmb_dust)
        hdu_cmb_dust.writeto(save_dir + common + "_cmbdust.fits",
                             overwrite=True)

        hdu_cmb_dust_noiseless = fits.PrimaryHDU(cmb_dust_noiseless)
        hdu_cmb_dust_noiseless.writeto(save_dir + common +
                                       "_cmbdust_noiseless.fits",
                                       overwrite=True)

        hdu_cmb_dust_noise_only = fits.PrimaryHDU(cmb_dust_noise_only)
        hdu_cmb_dust_noise_only.writeto(save_dir + common + "_noise.fits",
                                        overwrite=True)

    if return_maps:
        return cmb_dust, cmb_dust_noiseless, cmb_dust_noise_only, coverage_eff
    else:
        return
コード例 #6
0
def run_mc(nbmc,
           Namaster,
           cov,
           d,
           configs,
           verbose=False,
           clnoise=None,
           duration=4,
           beam=0.39268176):

    #### Dictionnary for 150 GHz
    dA = d.copy()
    dA['effective_duration'] = duration
    dA['nside'] = 256
    dA['nf_sub'] = 1
    dA['filter_nu'] = int(configs[0][-3:]) * 1e9
    print(configs[0], dA['filter_nu'] / 1e9, dA['effective_duration'], 'Years')

    dB = d.copy()
    dB['nside'] = 256
    dB['effective_duration'] = duration
    dB['nf_sub'] = 1
    dB['filter_nu'] = int(configs[1][-3:]) * 1e9
    print(configs[1], dB['filter_nu'] / 1e9, dB['effective_duration'], 'Years')

    ell_bins, b = Namaster.get_binning(d['nside'])
    mask_apo = Namaster.mask_apo
    okpix = cov > (np.max(cov) * 0.1)

    seed = np.random.randint(1, 100000)
    sky_config = {'cmb': seed}
    Qubic_sky_A = qss.Qubic_sky(sky_config, dA)
    Qubic_sky_B = qss.Qubic_sky(sky_config, dB)

    w = None
    cl_noise_qubic = np.zeros((nbmc, 1, len(ell_bins), 4))
    print('        Starting MC')
    for imc in range(nbmc):
        t0 = time.time()
        qubicnoiseA = Qubic_sky_A.get_partial_sky_maps_withnoise(
            spatial_noise=True,
            noise_only=True,
            Nyears=dA['effective_duration'],
            old_config=old_config)[0][0, :, :]
        qubicnoiseB = Qubic_sky_B.get_partial_sky_maps_withnoise(
            spatial_noise=True,
            noise_only=True,
            Nyears=dB['effective_duration'],
            old_config=old_config)[0][0, :, :]
        print(qubicnoiseA.shape)

        ### Compute Spectra:
        # Noise Only
        if verbose: print('   - QUBIC Noise maps')
        leff, cl_noise_qubic[imc, 0, :, :], w = Namaster.get_spectra(
            qubicnoiseA.T * np.sqrt(2),
            map2=qubicnoiseB.T * np.sqrt(2),
            purify_e=False,
            purify_b=True,
            w=w,
            verbose=False,
            beam_correction=beam,
            pixwin_correction=True)
        t1 = time.time()
        print(
            '             Monte-Carlo: Iteration {0:} over {1:} done in {2:5.2f} sec'
            .format(imc, nbmc, t1 - t0))

    # average MC results
    mcl_noise_qubic = np.mean(cl_noise_qubic, axis=0)[0]
    scl_noise_qubic = np.std(cl_noise_qubic, axis=0)[0]

    # The shape of cl_noise_qubic is : (#reals, #bands, #bins, 4)
    print('Old shape:', cl_noise_qubic.shape)
    cl_noise_qubic_reshape = np.moveaxis(cl_noise_qubic, [1, 2, 3], [3, 1, 2])
    print('New shape:', cl_noise_qubic_reshape.shape)
    # Covariance and correlation matrices for TT EE BB TE
    covbin, corrbin = amc.get_covcorr_patch(cl_noise_qubic_reshape,
                                            stokesjoint=True,
                                            doplot=False)

    return leff, mcl_noise_qubic, scl_noise_qubic, covbin
コード例 #7
0
d['nf_sub'] = 1  ### this is OK as we use noise-only simulations

### Bands
dA = d.copy()
dA['filter_nu'] = int(configs[0][-3:]) * 1e9
print('Frequency Band for A:', dA['filter_nu'] / 1e9)
dB = d.copy()
dB['filter_nu'] = int(configs[1][-3:]) * 1e9
print('Frequency Band for B', dB['filter_nu'] / 1e9)

### Sky
## Make a sky using PYSM: It will have the expected QUBIC beam, the coverage and noise according to this coverage
## This creates a realization of the sky (a realization of the CMB is there is CMB in sly_config)
seed = np.random.randint(1)
sky_config = {'cmb': seed}
Qubic_sky_A = qss.Qubic_sky(sky_config, dA)
Qubic_sky_B = qss.Qubic_sky(sky_config, dB)

maptest, coverageA = Qubic_sky_A.get_partial_sky_maps_withnoise(
    spatial_noise=True,
    noise_only=True,
    Nyears=duration,
    old_config=old_config)

################################### Flat Weighting #################################################################
### Create a Namaster object
cov = coverageA.copy()
lmax = 2 * d['nside'] - 1
okpix = cov > np.max(cov) * covcut

### We use Flat weighting