コード例 #1
0
ファイル: quilt.py プロジェクト: jalabort/nucleus
def update_pkg(
    df: pd.DataFrame,
    user: str,
    package: str,
    readme: Optional[str] = None,
    hash_key=None,
):
    r"""

    Parameters
    ----------
    df
    user
    package
    readme
    hash_key

    Returns
    -------

    """
    pkg_path = f'{user}/{package}'
    quilt.build(pkg_path, quilt.nodes.GroupNode(dict(author='@hudlrd')))

    quilt.build(f'{pkg_path}/df', quilt.nodes.DataNode(None, None, df, {}))

    # TODO: warn the user if readme if not provided
    if readme is not None:
        with NamedTemporaryFile() as tmp:
            tmp.write(readme.encode('UTF-8'))
            tmp.flush()
            quilt.build(f'{pkg_path}/README', tmp.model_name)

    quilt.login()
    quilt.push(pkg_path, is_public=True, hash=hash_key)
コード例 #2
0
ファイル: data_prep.py プロジェクト: jtaquia/deepbedmap
# %%
os.makedirs(name="model/train", exist_ok=True)
np.save(file="model/train/W1_data.npy", arr=rema)
np.save(file="model/train/W2_data.npy", arr=measuresvelocity)
np.save(file="model/train/W3_data.npy", arr=accumulation)
np.save(file="model/train/X_data.npy", arr=lores)
np.save(file="model/train/Y_data.npy", arr=hires)

# %% [markdown]
# ### Quilt
#
# Login -> Build -> Push

# %%
quilt.login()

# %%
# Tiled datasets for training neural network
quilt.build(package="weiji14/deepbedmap/model/train/W1_data", path=rema)
quilt.build(package="weiji14/deepbedmap/model/train/W2_data",
            path=measuresvelocity)
quilt.build(package="weiji14/deepbedmap/model/train/W3_data",
            path=accumulation)
quilt.build(package="weiji14/deepbedmap/model/train/X_data", path=lores)
quilt.build(package="weiji14/deepbedmap/model/train/Y_data", path=hires)

# %%
# Original datasets for neural network predictions on bigger area
quilt.build(package="weiji14/deepbedmap/lowres/bedmap2_bed",
            path="lowres/bedmap2_bed.tif")