コード例 #1
0
ファイル: test_tensor_tebd.py プロジェクト: zizai/quimb
    def test_ising_model_with_field(self, cyclic):

        p = qtn.MPS_computational_state('0000100000', cyclic=cyclic)
        pd = p.to_dense()

        H_nni = qtn.NNI_ham_ising(10, j=4, bx=1, cyclic=cyclic)
        H_mpo = qtn.MPO_ham_ising(10, j=4, bx=1, cyclic=cyclic)
        H = qu.ham_ising(10, jz=4, bx=1, cyclic=cyclic)

        tebd = qtn.TEBD(p, H_nni, tol=1e-6)
        tebd.split_opts['cutoff'] = 1e-9
        tebd.split_opts['cutoff_mode'] = 'rel'
        evo = qu.Evolution(pd, H)

        e0 = qu.expec(pd, H)
        e0_mpo = qtn.expec_TN_1D(p.H, H_mpo, p)

        assert e0_mpo == pytest.approx(e0)

        tf = 2
        ts = np.linspace(0, tf, 21)
        evo.update_to(tf)

        for pt in tebd.at_times(ts):
            assert isinstance(pt, qtn.MatrixProductState)
            assert (pt.H @ pt) == pytest.approx(1.0, rel=1e-5)

        assert (qu.expec(tebd.pt.to_dense(),
                         evo.pt) == pytest.approx(1.0, rel=1e-5))

        ef_mpo = qtn.expec_TN_1D(tebd.pt.H, H_mpo, tebd.pt)
        assert ef_mpo == pytest.approx(e0, 1e-5)
コード例 #2
0
ファイル: test_tensor_tebd.py プロジェクト: zizai/quimb
def test_OTOC_local():
    L = 10
    psi0 = qtn.MPS_computational_state('0' * L, cyclic=True)
    H1 = qtn.NNI_ham_ising(L, j=4, bx=0, cyclic=True)
    H_back1 = qtn.NNI_ham_ising(L, j=-4, bx=0, cyclic=True)
    H2 = qtn.NNI_ham_ising(L, j=4, bx=1, cyclic=True)
    H_back2 = qtn.NNI_ham_ising(L, j=-4, bx=-1, cyclic=True)
    A = qu.pauli('z')
    ts = np.linspace(1, 2, 2)
    OTOC_t = []
    for OTOC in OTOC_local(psi0,
                           H1,
                           H_back1,
                           ts,
                           5,
                           A,
                           tol=1e-5,
                           split_opts={
                               'cutoff': 1e-5,
                               'cutoff_mode': 'rel'
                           },
                           initial_eigenstate='check'):
        OTOC_t += [OTOC]
    assert OTOC_t[0] == pytest.approx(1.0)
    assert OTOC_t[1] == pytest.approx(1.0)
    x_t = []
    for x in OTOC_local(psi0,
                        H2,
                        H_back2,
                        ts,
                        5,
                        A,
                        tol=1e-5,
                        split_opts={
                            'cutoff': 1e-5,
                            'cutoff_mode': 'rel'
                        },
                        initial_eigenstate='check'):
        x_t += [x]
    assert x_t[0] == pytest.approx(0.52745, 1e-5)
    assert x_t[1] == pytest.approx(0.70440, 1e-5)
コード例 #3
0
def CLTNRepHWQC(nq, nr, p):
    px = 0.004
    kappa2 = 10**7
    alpha2 = 8
    pi1 = [1 - 10 * p, 10 * p]
    pi2 = [1 - 0.299 * (p**0.5), 0.299 * (p**0.5)]
    p3 = p * kappa2 * alpha2 * (350 * (10**(-9)) + (10 / (kappa2 * alpha2)))
    pi3 = [1 - p3, p3]
    pz1 = 0.845 * (p**0.5)
    pz2 = 0.133 * (p**0.5)
    pz1z2 = 0.133 * (p**0.5)
    pm = [1 - px, px]
    pp = [1 - 15 * p / 2, 15 * p / 2]
    perf = [1, 0]
    ptq = [1 - pz1 - pz2 - pz1z2, pz1, pz2, pz1z2]
    #print(psq)
    #print(ptq)
    #print(pm)
    #print(pp)
    gh0 = format(0, 'b').zfill(nq + 1)
    gh1 = format(2**(nq + 1) - 1, 'b').zfill(nq + 1)
    ghz = (qtn.MPS_computational_state(gh0) + qtn.MPS_computational_state(gh1))
    ghz = ghz.contract(all)
    ghzd = ghz.data
    for r in range(0, nr):
        if r == 0:
            tagsD = ('D{:d}T0'.format(nq - 1))
            indsD = ('d{:d}g0'.format(nq - 1), )
            TN = qtn.Tensor(DTermWait(pi1), indsD, tagsD)
            for dq in range(0, nq - 1):
                tagsD = ('D{:d}T0'.format(dq))
                indsD = ('d{:d}g0'.format(dq), )
                TN = TN & qtn.Tensor(DTermWait(pi1), indsD, tagsD)
        else:
            for dq in range(0, nq):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r - 1),
                         'd{:d}g{:d}'.format(dq, 4 * r))
                TN = TN & qtn.Tensor(IdTensor(perf), indsD, tagsD)
        for aq in range(0, nq - 1):
            tagsA = ('A{:d}T{:d}'.format(aq, 4 * r))
            indsA = ('sf{:d}r{:d}'.format(aq,
                                          r), 'a{:d}g{:d}'.format(aq, 4 * r))
            TN = TN & qtn.Tensor(APrepTensor1(pp), indsA, tagsA)
        #first round of CNOTs
        for aq in range(0, nq - 1):
            tagsD = ('D{:d}A{:d}T{:d}'.format(aq, aq, 4 * r + 1))
            indsD = ('d{:d}g{:d}'.format(aq, 4 * r), 'a{:d}g{:d}'.format(
                aq, 4 * r), 'd{:d}g{:d}'.format(aq, 4 * r + 1),
                     'a{:d}g{:d}'.format(aq, 4 * r + 1))
            TN = TN & qtn.Tensor(RepCNOTTensorHW(ptq), indsD, tagsD)
        tagsD = ('D{:d}T{:d}'.format(nq - 1, 4 * r + 1))
        indsD = ('d{:d}g{:d}'.format(nq - 1, 4 * r),
                 'd{:d}g{:d}'.format(nq - 1, 4 * r + 1))
        TN = TN & qtn.Tensor(IdTensor(pi2), indsD, tagsD)
        #second round of CNOTs
        for aq in range(0, nq - 1):
            tagsD = ('D{:d}A{:d}T{:d}'.format(aq + 1, aq, 4 * r + 2))
            indsD = ('d{:d}g{:d}'.format(aq + 1, 4 * r + 1),
                     'a{:d}g{:d}'.format(aq, 4 * r + 1), 'd{:d}g{:d}'.format(
                         aq + 1,
                         4 * r + 2), 'a{:d}g{:d}'.format(aq, 4 * r + 2))
            TN = TN & qtn.Tensor(RepCNOTTensorHW(ptq), indsD, tagsD)
        tagsD = ('D{:d}T{:d}'.format(0, 4 * r + 2))
        indsD = ('d{:d}g{:d}'.format(0, 4 * r + 1),
                 'd{:d}g{:d}'.format(0, 4 * r + 2))
        TN = TN & qtn.Tensor(IdTensor(pi2), indsD, tagsD)
        #measurement round/wait locations
        #first do the terminal data wait locations
        if r == nr - 1:
            for dq in range(0, nq):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 3))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 2),
                         'd{:d}g{:d}'.format(dq, 4 * r + 3))
                TN = TN & qtn.Tensor(IdTensor(pm), indsD, tagsD)
            for dq in range(0, (nq - 1) // 2):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 4))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 3),
                         'd{:d}lz'.format(dq), 'd{:d}p'.format(dq))
                TN = TN & qtn.Tensor(DatTermTensor(pi3), indsD, tagsD)
            tagsD = ('D{:d}T{:d}'.format((nq - 1) // 2, 4 * r + 4))
            indsD = ('d{:d}g{:d}'.format(
                (nq - 1) // 2, 4 * r + 3), 'd{:d}lz'.format((nq - 1) // 2))
            TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
            for dq in range(((nq - 1) // 2) + 1, nq):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 4))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 3),
                         'd{:d}lz'.format(dq), 'd{:d}p'.format(dq - 1))
                TN = TN & qtn.Tensor(DatTermTensor(pi3), indsD, tagsD)
        else:
            for dq in range(0, (nq - 1) // 2):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 3))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 2),
                         'd{:d}g{:d}'.format(dq, 4 * r + 3))
                TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
            tagsD = ('D{:d}T{:d}'.format((nq - 1) // 2, 4 * r + 3))
            indsD = ('d{:d}g{:d}'.format(
                (nq - 1) // 2, 4 * r + 2), 'd{:d}g{:d}'.format((nq - 1) // 2,
                                                               4 * r + 3))
            TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
            for dq in range(((nq - 1) // 2) + 1, nq):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 3))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 2),
                         'd{:d}g{:d}'.format(dq, 4 * r + 3))
                TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
        #now do the ancilla measurement failure locations
        for aq in range(0, nq - 1):
            tagsA = ('A{:d}T{:d}'.format(aq, 4 * r + 3))
            indsA = ('a{:d}g{:d}'.format(aq, 4 * r + 2), )
            TN = TN & qtn.Tensor(AMeasTensor1(pm), indsA, tagsA)
    #finally, put in the logical control tensor
    tagsL = ('LZ')
    indsL = ('lz', )
    for dq in range(0, nq):
        indsL = indsL + ('d{:d}lz'.format(dq), )
    TN = TN & qtn.Tensor(ghzd, indsL, tagsL)
    return TN
コード例 #4
0
def CLTNRepHWTraceMeas(nq, nr, p):
    #First initialize all HW noise parameters. Note that p=k1/k2

    pxm = 0.004  #X readout failure probability
    kappa2 = 10**7
    alpha2 = 8  #photon number
    p1 = 10 * p  #fail prob for data qubit wait location during very first ancilla initialization
    p2 = 0.299 * (
        p**0.5
    )  #fail prob for data qubit wait location during execution of a CNOT on other qubits
    p3 = p * kappa2 * alpha2 * (
        350 * (10**(-9)) + (10 / (kappa2 * alpha2))
    )  #fail prob for data qubit wait location during readout of ancilla
    pz1 = 0.845 * (
        p**0.5
    )  #prob of z1 otimes I failure after CNOT (qubit 1 is control, 2 is target)
    pz2 = 0.133 * (
        p**0.5
    )  #prob of I otimes z2 failure after CNOT (qubit 1 is control, 2 is target)
    pz1z2 = 0.133 * (p**0.5)  #prob of z1 otimes z2 failure after CNOT

    #create probability distributions to be passed to local tensor constructors which model different locations
    pi1 = [1 - p1, p1]  #data qubit wait during first ancilla init
    pi2 = [1 - p2, p2]  #data qubit wait during CNOT
    pi3 = [1 - p3, p3]  #data qubit wait during ancilla measurement and re-init
    pm = [1 - pxm, pxm]  #X measurement location
    pp = [1 - 15 * p / 2, 15 * p / 2]  #ancilla initialization
    perf = [1, 0]  #perfect wait location
    ptq = [1 - pz1 - pz2 - pz1z2, pz1, pz2, pz1z2]  #CNOT location

    gh0 = format(0, 'b').zfill(nq + 1)
    gh1 = format(2**(nq + 1) - 1, 'b').zfill(nq + 1)
    ghz = (qtn.MPS_computational_state(gh0) + qtn.MPS_computational_state(gh1))
    ghz = ghz.contract(all)
    ghzd = ghz.data
    for r in range(0, nr):
        if r == 0:
            tagsD = ('D{:d}T0'.format(nq - 1))
            indsD = ('d{:d}g0'.format(nq - 1), )
            TN = qtn.Tensor(DTermWait(pi1), indsD, tagsD)
            for dq in range(0, nq - 1):
                tagsD = ('D{:d}T0'.format(dq))
                indsD = ('d{:d}g0'.format(dq), )
                TN = TN & qtn.Tensor(DTermWait(pi1), indsD, tagsD)
        else:
            for dq in range(0, nq):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r - 1),
                         'd{:d}g{:d}'.format(dq, 4 * r))
                TN = TN & qtn.Tensor(IdTensor(perf), indsD, tagsD)
        for aq in range(0, nq - 1):
            tagsA = ('A{:d}T{:d}'.format(aq, 4 * r))
            indsA = ('sf{:d}r{:d}'.format(aq,
                                          r), 'a{:d}g{:d}'.format(aq, 4 * r))
            TN = TN & qtn.Tensor(APrepTensor1(pp), indsA, tagsA)
            tagsST = ('A{:d}T{:d}TR'.format(aq, 4 * r))
            indsST = ('sf{:d}r{:d}'.format(aq, r), )
            TN = TN & qtn.Tensor(np.ones(2), indsST, tagsST)
        #first round of CNOTs
        for aq in range(0, nq - 1):
            tagsD = ('D{:d}A{:d}T{:d}'.format(aq, aq, 4 * r + 1))
            indsD = ('d{:d}g{:d}'.format(aq, 4 * r), 'a{:d}g{:d}'.format(
                aq, 4 * r), 'd{:d}g{:d}'.format(aq, 4 * r + 1),
                     'a{:d}g{:d}'.format(aq, 4 * r + 1))
            TN = TN & qtn.Tensor(RepCNOTTensorHW(ptq), indsD, tagsD)
        tagsD = ('D{:d}T{:d}'.format(nq - 1, 4 * r + 1))
        indsD = ('d{:d}g{:d}'.format(nq - 1, 4 * r),
                 'd{:d}g{:d}'.format(nq - 1, 4 * r + 1))
        TN = TN & qtn.Tensor(IdTensor(pi2), indsD, tagsD)
        #second round of CNOTs
        for aq in range(0, nq - 1):
            tagsD = ('D{:d}A{:d}T{:d}'.format(aq + 1, aq, 4 * r + 2))
            indsD = ('d{:d}g{:d}'.format(aq + 1, 4 * r + 1),
                     'a{:d}g{:d}'.format(aq, 4 * r + 1), 'd{:d}g{:d}'.format(
                         aq + 1,
                         4 * r + 2), 'a{:d}g{:d}'.format(aq, 4 * r + 2))
            TN = TN & qtn.Tensor(RepCNOTTensorHW(ptq), indsD, tagsD)
        tagsD = ('D{:d}T{:d}'.format(0, 4 * r + 2))
        indsD = ('d{:d}g{:d}'.format(0, 4 * r + 1),
                 'd{:d}g{:d}'.format(0, 4 * r + 2))
        TN = TN & qtn.Tensor(IdTensor(pi2), indsD, tagsD)
        #measurement round/wait locations
        #first do the terminal data wait locations
        if r == nr - 1:
            for dq in range(0, (nq - 1) // 2):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 3))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 2),
                         'd{:d}lz'.format(dq), 'd{:d}p'.format(dq))
                TN = TN & qtn.Tensor(DatTermTensor(pi3), indsD, tagsD)
            tagsD = ('D{:d}T{:d}'.format((nq - 1) // 2, 4 * r + 3))
            indsD = ('d{:d}g{:d}'.format(
                (nq - 1) // 2, 4 * r + 2), 'd{:d}lz'.format((nq - 1) // 2))
            TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
            for dq in range(((nq - 1) // 2) + 1, nq):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 3))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 2),
                         'd{:d}lz'.format(dq), 'd{:d}p'.format(dq - 1))
                TN = TN & qtn.Tensor(DatTermTensor(pi3), indsD, tagsD)
        else:
            for dq in range(0, (nq - 1) // 2):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 3))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 2),
                         'd{:d}g{:d}'.format(dq, 4 * r + 3))
                TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
            tagsD = ('D{:d}T{:d}'.format((nq - 1) // 2, 4 * r + 3))
            indsD = ('d{:d}g{:d}'.format(
                (nq - 1) // 2, 4 * r + 2), 'd{:d}g{:d}'.format((nq - 1) // 2,
                                                               4 * r + 3))
            TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
            for dq in range(((nq - 1) // 2) + 1, nq):
                tagsD = ('D{:d}T{:d}'.format(dq, 4 * r + 3))
                indsD = ('d{:d}g{:d}'.format(dq, 4 * r + 2),
                         'd{:d}g{:d}'.format(dq, 4 * r + 3))
                TN = TN & qtn.Tensor(IdTensor(pi3), indsD, tagsD)
        #now do the ancilla measurement failure locations
        for aq in range(0, nq - 1):
            tagsA = ('A{:d}T{:d}'.format(aq, 4 * r + 3))
            indsA = ('a{:d}g{:d}'.format(aq, 4 * r + 2), )
            TN = TN & qtn.Tensor(AMeasTensor1(pm), indsA, tagsA)
    #finally, put in the logical control tensor
    tagsL = ('LZ')
    indsL = ('lz', )
    for dq in range(0, nq):
        indsL = indsL + ('d{:d}lz'.format(dq), )
    TN = TN & qtn.Tensor(ghzd, indsL, tagsL)
    return TN
コード例 #5
0
    sequence='ABCDCDAB',
    swap_trick=False
):
    file = f'circuit_n{n}_m{depth}_s{seed}_e{elided}_p{sequence}.qsim'

    if swap_trick:
        gate_opts={'contract': 'swap-split-gate', 'max_bond': 2}  
    else:
        gate_opts={}
    
    # instantiate the `Circuit` object that 
    # constructs the initial tensor network:
    return qtn.Circuit.from_qasm_file(file, gate_opts=gate_opts)

circ = load_circuit(depth=10)
psi_f = qtn.MPS_computational_state('0' * (circ.N))
tn = circ.psi & psi_f
output_inds = []


# inplace full simplify and cast to single precision
tn.full_simplify_(output_inds=output_inds)
tn.astype_('complex64')

opt = ctg.HyperOptimizer(
   # methods=['kahypar', 'greedy', 'walktrap'],
    methods = ['greedy','kahypar'],
    max_repeats=128,
    progbar=True,
    minimize='flops',
    score_compression=0.5,  # deliberately make the optimizer try many methods