コード例 #1
0
ファイル: server.py プロジェクト: zhuozecheng/quiver
 def get_layer_outputs(layer_name, input_path):
     return jsonify(
         save_layer_outputs(
             load_img(join(abspath(input_folder), input_path),
                      single_input_shape,
                      grayscale=input_channels == 1), model, layer_name,
             temp_folder, input_path))
コード例 #2
0
    def get_layer_outputs(layer_name, input_path):
        is_grayscale = (input_channels == 1)
        input_img = load_img(join(abspath(input_folder), input_path),
                             single_input_shape,
                             grayscale=is_grayscale)

        output_generator = get_outputs_generator(model, layer_name)

        with get_evaluation_context():

            layer_outputs = output_generator(input_img)[0]
            output_files = []

            if keras.backend.backend() == 'theano':
                #correct for channel location difference betwen TF and Theano
                layer_outputs = np.rollaxis(layer_outputs, 0, 3)
            for z in range(0, layer_outputs.shape[2]):
                img = layer_outputs[:, :, z]
                deprocessed = deprocess_image(img)
                filename = get_output_name(temp_folder, layer_name, input_path,
                                           z)
                output_files.append(relpath(filename, abspath(temp_folder)))
                imsave(filename, deprocessed)

        return jsonify(output_files)
コード例 #3
0
ファイル: server.py プロジェクト: NagiSenbon/Quiver-tf.keras
 def get_layer_outputs(layer_name, input_path):
     return jsonify(
         save_layer_outputs(
             load_img(
                 join(abspath(input_folder), input_path),
                 single_input_shape,
                 grayscale=(input_channels == 1),
                 mean=mean,
                 std=std), model, layer_name, temp_folder, input_path))
コード例 #4
0
 def get_prediction(input_path):
     with get_evaluation_context():
         return safe_jsonify(
             decode_predictions(
                 model.predict(
                     load_img(join(abspath(input_folder), input_path),
                              single_input_shape,
                              grayscale=(input_channels == 1))), classes,
                 top))
コード例 #5
0
ファイル: server.py プロジェクト: scatterbrain333/quiver
 def get_prediction(input_path):
     is_grayscale = (input_channels == 1)
     input_img = load_img(input_path,
                          single_input_shape,
                          grayscale=is_grayscale)
     with get_evaluation_context():
         return jsonify(
             json.loads(
                 get_json(decode_predictions(model.predict(input_img)))))
コード例 #6
0
ファイル: server.py プロジェクト: brevettiai/quiver
 def get_layer_outputs(layer_name, input_path):
     print(single_input_shape)
     return jsonify(
         save_layer_outputs(
             load_img(join(abspath(input_folder),
                           input_path.replace("%23", "#")),
                      single_input_shape,
                      grayscale=(input_channels == 1),
                      mean=mean,
                      std=std), model, layer_name, temp_folder, input_path))
コード例 #7
0
ファイル: server.py プロジェクト: ruslangrimov/quiver
 def get_layer_outputs(layer_name, input_path):
     return jsonify(
         save_layer_outputs(
             custom_load_img(abspath(input_folder), input_path)
             if custom_load_img else load_img(
                 join(abspath(input_folder), input_path),
                 single_input_shape,
                 grayscale=(input_channels == 1),
                 mean=mean,
                 std=std), model, layer_name, temp_folder, input_path))
コード例 #8
0
ファイル: server.py プロジェクト: zhuozecheng/quiver
 def get_prediction(input_path):
     is_grayscale = (input_channels == 1)
     input_img = load_img(join(abspath(input_folder), input_path),
                          single_input_shape,
                          grayscale=is_grayscale)
     with get_evaluation_context():
         return jsonify(
             json.loads(
                 get_json(
                     decode_predictions(model.predict(input_img), classes,
                                        top))))
コード例 #9
0
ファイル: server.py プロジェクト: NagiSenbon/Quiver-tf.keras
 def get_prediction(input_path):
     with get_evaluation_context():
         return safe_jsonify(
             decode_predictions(
                 model.predict(
                     load_img(
                         join(abspath(input_folder), input_path),
                         single_input_shape,
                         grayscale=(input_channels == 1),
                         mean=mean,
                         std=std)), classes, top))