def main(): import numpy as np n_qubit = 2 obs = Observable(n_qubit) initial_state = QuantumState(n_qubit) obs.add_operator(1, "Z 0 Z 1") circuit_list = [] p_list = [0.02, 0.04, 0.06, 0.08] #prepare circuit list for p in p_list: circuit = QuantumCircuit(n_qubit) circuit.add_H_gate(0) circuit.add_RY_gate(1, np.pi / 6) circuit.add_CNOT_gate(0, 1) circuit.add_gate( Probabilistic([p / 4, p / 4, p / 4], [X(0), Y(0), Z(0)])) #depolarizing noise circuit.add_gate( Probabilistic([p / 4, p / 4, p / 4], [X(1), Y(1), Z(1)])) #depolarizing noise circuit_list.append(circuit) #get mitigated output mitigated, non_mitigated_array, fit_coefs = error_mitigation_extrapolate_linear( circuit_list, p_list, initial_state, obs, n_circuit_sample=100000, return_full=True) #plot the result p = np.linspace(0, max(p_list), 100) plt.plot(p, fit_coefs[0] * p + fit_coefs[1], linestyle="--", label="linear fit") plt.scatter(p_list, non_mitigated_array, label="un-mitigated") plt.scatter(0, mitigated, label="mitigated output") #prepare the clean result state = QuantumState(n_qubit) circuit = QuantumCircuit(n_qubit) circuit.add_H_gate(0) circuit.add_RY_gate(1, np.pi / 6) circuit.add_CNOT_gate(0, 1) circuit.update_quantum_state(state) plt.scatter(0, obs.get_expectation_value(state), label="True output") plt.xlabel("error rate") plt.ylabel("expectation value") plt.legend() plt.show()
def test_circuit_add_gate(self): from qulacs import QuantumCircuit, QuantumState from qulacs.gate import Identity, X, Y, Z, H, S, Sdag, T, Tdag, sqrtX, sqrtXdag, sqrtY, sqrtYdag from qulacs.gate import P0, P1, U1, U2, U3, RX, RY, RZ, CNOT, CZ, SWAP, TOFFOLI, FREDKIN, Pauli, PauliRotation from qulacs.gate import DenseMatrix, SparseMatrix, DiagonalMatrix, RandomUnitary, ReversibleBoolean, StateReflection from qulacs.gate import BitFlipNoise, DephasingNoise, IndependentXZNoise, DepolarizingNoise, TwoQubitDepolarizingNoise, AmplitudeDampingNoise, Measurement from qulacs.gate import merge, add, to_matrix_gate, Probabilistic, CPTP, Instrument, Adaptive from scipy.sparse import lil_matrix qc = QuantumCircuit(3) qs = QuantumState(3) ref = QuantumState(3) sparse_mat = lil_matrix((4, 4)) sparse_mat[0, 0] = 1 sparse_mat[1, 1] = 1 def func(v, d): return (v + 1) % d def adap(v): return True gates = [ Identity(0), X(0), Y(0), Z(0), H(0), S(0), Sdag(0), T(0), Tdag(0), sqrtX(0), sqrtXdag(0), sqrtY(0), sqrtYdag(0), Probabilistic([0.5, 0.5], [X(0), Y(0)]), CPTP([P0(0), P1(0)]), Instrument([P0(0), P1(0)], 1), Adaptive(X(0), adap), CNOT(0, 1), CZ(0, 1), SWAP(0, 1), TOFFOLI(0, 1, 2), FREDKIN(0, 1, 2), Pauli([0, 1], [1, 2]), PauliRotation([0, 1], [1, 2], 0.1), DenseMatrix(0, np.eye(2)), DenseMatrix([0, 1], np.eye(4)), SparseMatrix([0, 1], sparse_mat), DiagonalMatrix([0, 1], np.ones(4)), RandomUnitary([0, 1]), ReversibleBoolean([0, 1], func), StateReflection(ref), BitFlipNoise(0, 0.1), DephasingNoise(0, 0.1), IndependentXZNoise(0, 0.1), DepolarizingNoise(0, 0.1), TwoQubitDepolarizingNoise(0, 1, 0.1), AmplitudeDampingNoise(0, 0.1), Measurement(0, 1), merge(X(0), Y(1)), add(X(0), Y(1)), to_matrix_gate(X(0)), P0(0), P1(0), U1(0, 0.), U2(0, 0., 0.), U3(0, 0., 0., 0.), RX(0, 0.), RY(0, 0.), RZ(0, 0.), ] gates.append(merge(gates[0], gates[1])) gates.append(add(gates[0], gates[1])) ref = None for gate in gates: qc.add_gate(gate) for gate in gates: qc.add_gate(gate) qc.update_quantum_state(qs) qc = None qs = None for gate in gates: gate = None gates = None parametric_gates = None
def test_VqeOptimizer(): from qulacs import ParametricQuantumCircuit from qulacs import QuantumState from qulacs import Observable from qulacs.gate import Probabilistic, X, Y, Z import numpy as np import matplotlib.pyplot as plt n_qubit = 2 p_list = [0.05, 0.1, 0.15] parametric_circuit_list = \ [ParametricQuantumCircuit(n_qubit) for i in range(len(p_list))] initial_state = QuantumState(n_qubit) for (p, circuit) in zip(p_list, parametric_circuit_list): circuit.add_H_gate(0) circuit.add_parametric_RY_gate(1, np.pi / 6) circuit.add_CNOT_gate(0, 1) prob = Probabilistic([p / 4, p / 4, p / 4], [X(0), Y(0), Z(0)]) circuit.add_gate(prob) noiseless_circuit = ParametricQuantumCircuit(n_qubit) noiseless_circuit.add_H_gate(0) noiseless_circuit.add_parametric_RY_gate(1, np.pi / 6) noiseless_circuit.add_CNOT_gate(0, 1) n_sample_per_circuit = 1 n_circuit_sample = 1000 obs = Observable(n_qubit) obs.add_operator(1.0, "Z 0 Z 1") obs.add_operator(0.5, "X 0 X 1") initial_param = np.array([np.pi / 6]) opt = VqeOptimizer(parametric_circuit_list, initial_state, obs, initial_param, p_list, n_circuit_sample=n_circuit_sample, n_sample_per_circuit=n_sample_per_circuit, noiseless_circuit=noiseless_circuit) noisy = opt.sample_output(initial_param) mitigated, exp_array, _ = opt.sample_mitigated_output(initial_param, return_full=True) exact = opt.exact_output(initial_param) print(noisy, exact) print(exp_array, mitigated) opt_param = opt.optimize() print(opt_param) theta_list = np.linspace(0, np.pi, 100) output_list = [opt.exact_output([theta]) for theta in theta_list] plt.plot(theta_list, output_list, color="black", linestyle="dashed", label="exact") plt.scatter(opt.parameter_history, opt.exp_history, c="blue", label="optimization history") plt.xlabel("theta") plt.ylabel("output") plt.legend() plt.show()
import numpy as np from functools import reduce from qulacs.gate import X, Y, Z, DenseMatrix I_mat = np.eye(2, dtype=complex) X_mat = X(0).get_matrix() Y_mat = Y(0).get_matrix() Z_mat = Z(0).get_matrix() ## Function to create full-size gate def make_fullgate(list_SiteAndOperator, nqubit): """ Receive list_SiteAndOperator = [ [i_0, O_0], [i_1, O_1], ...] Insert Identity to irrelevant qubtis Create (2**nqubit, 2**nqubit) martrix of I(0) * ... * O_0(i_0) * ... * O_1(i_1) ... """ list_Site = [SiteAndOperator[0] for SiteAndOperator in list_SiteAndOperator] list_SingleGates = [] ## reduce 1-qubit gates using np.kron cnt = 0 for i in range(nqubit): if i in list_Site: list_SingleGates.append( list_SiteAndOperator[cnt][1] ) cnt += 1 else: list_SingleGates.append(I_mat) return reduce(np.kron, list_SingleGates) def create_Ising_time_evol_gate(nqubit, time_step=0.77):
show_quantum_state(state) for i in range(1, num_bits + 1): h_gate = H(i) h_gate.update_quantum_state(state) print("\nAfter H Gate:") show_quantum_state(state) cu_gate = DenseMatrix(tuple(range(num_bits + 1)), cu_mat) cu_gate.update_quantum_state(state) print("\nAfter CU Gate:") show_quantum_state(state) z_gate = Z(0) z_gate.update_quantum_state(state) print("\nAfter Z Gate:") show_quantum_state(state) cu_gate = DenseMatrix(tuple(range(num_bits + 1)), cu_mat) cu_gate.update_quantum_state(state) print("\nAfter CU Gate:") show_quantum_state(state) for i in range(1, num_bits + 1): h_gate = H(i) h_gate.update_quantum_state(state)
def create_input_gate(self, x, uin_type): # Encode x into quantum state # uin_type: unitary data-input type 0, 1, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61 # x = 1dim. variables, [-1,1] I_mat = np.eye(2, dtype=complex) X_mat = X(0).get_matrix() Y_mat = Y(0).get_matrix() Z_mat = Z(0).get_matrix() #make operators s.t. exp(i*theta * sigma^z_j@sigma^z_k) @:tensor product def ZZ(u, theta, j, k): u.add_CNOT_gate(j, k) u.add_RZ_gate(k, -2 * theta * self.time_step) u.add_CNOT_gate(j, k) return u def XX(u, theta, j, k): u.add_H_gate(j) u.add_H_gate(k) ZZ(u, theta, j, k) u.add_H_gate(j) u.add_H_gate(k) return u def YY(u, theta, j, k): u.add_U1_gate(j, -np.pi / 2.) u.add_U1_gate(k, -np.pi / 2.) XX(u, theta, j, k) u.add_U1_gate(j, np.pi / 2.) u.add_U1_gate(k, np.pi / 2.) return u theta = x u = QuantumCircuit(self.nqubit) angle_y = np.arcsin(x) angle_z = np.arccos(x**2) if uin_type == 0: for i in range(self.nqubit): u.add_RY_gate(i, angle_y[i]) u.add_RZ_gate(i, angle_z[i]) elif uin_type == 1: #for d in range(2): for i in range(self.nqubit): u.add_H_gate(i) u.add_RY_gate(i, angle_y[i]) u.add_RZ_gate(i, angle_z[i]) # KT: add second order expansion for i in range(self.nqubit - 1): for j in range(i + 1, self.nqubit): angle_z2 = np.arccos(x[i] * x[j]) u.add_CNOT_gate(i, j) u.add_RZ_gate(j, angle_z2) u.add_CNOT_gate(i, j) elif uin_type == 20: for i in range(self.nqubit): u.add_RX_gate(i, -2 * x[i] * self.time_step) elif uin_type == 21: ham = np.zeros((2**self.nqubit, 2**self.nqubit), dtype=complex) for i in range(self.nqubit): # i runs 0 to nqubit-1 J_x = x[i] print(x) ham += J_x * make_fullgate([[i, X_mat]], self.nqubit) ## Build time-evolution operator by diagonalizing the Ising hamiltonian H*P = P*D <-> H = P*D*P^dagger diag, eigen_vecs = np.linalg.eigh(ham) time_evol_op = np.dot( np.dot(eigen_vecs, np.diag(np.exp(-1j * self.time_step * diag))), eigen_vecs.T.conj()) # e^-iHT # Convert to qulacs gate time_evol_gate = DenseMatrix([i for i in range(self.nqubit)], time_evol_op) u.add_gate(time_evol_gate) elif uin_type == 30: #Ising hamiltonian with input coefficient # nearest neighbor spin-conbination has interaction for i in range(self.nqubit): u.add_RX_gate(i, -2 * x[i] * self.time_step) ZZ(u, theta[i] * theta[(i + 1) % self.nqubit], i, i + 1) elif uin_type == 31: ham = np.zeros((2**self.nqubit, 2**self.nqubit), dtype=complex) for i in range(self.nqubit): J_x = x[i] ham += J_x * make_fullgate([[i, X_mat]], self.nqubit) J_zz = x[i] * x[(i + 1) % self.nqubit] ham += J_zz * make_fullgate( [[i, Z_mat], [(i + 1) % self.nqubit, Z_mat]], self.nqubit) diag, eigen_vecs = np.linalg.eigh(ham) time_evol_op = np.dot( np.dot(eigen_vecs, np.diag(np.exp(-1j * self.time_step * diag))), eigen_vecs.T.conj()) time_evol_gate = DenseMatrix([i for i in range(self.nqubit)], time_evol_op) u.add_gate(time_evol_gate) elif uin_type == 40: #Ising hamiltonian with input coefficient # every two possible spin-conbination has interaction for i in range(self.nqubit): u.add_RX_gate(i, -2 * x[i] * self.time_step) for j in range(i + 1, self.nqubit): ZZ(u, theta[i] * theta[j], i, j) elif uin_type == 41: ham = np.zeros((2**self.nqubit, 2**self.nqubit), dtype=complex) for i in range(self.nqubit): J_x = x[i] ham += J_x * make_fullgate([[i, X_mat]], self.nqubit) for j in range(i + 1, self.nqubit): J_ij = x[i] * x[j] ham += J_ij * make_fullgate([[i, Z_mat], [j, Z_mat]], self.nqubit) diag, eigen_vecs = np.linalg.eigh(ham) time_evol_op = np.dot( np.dot(eigen_vecs, np.diag(np.exp(-1j * self.time_step * diag))), eigen_vecs.T.conj()) time_evol_gate = DenseMatrix([i for i in range(self.nqubit)], time_evol_op) u.add_gate(time_evol_gate) elif uin_type == 50: #Heisenberg hamiltonian with input coefficient # nearest neighbor spin-conbination has interaction for i in range(self.nqubit): u.add_RX_gate(i, -2 * x[i] * self.time_step) XX(u, theta[i] * theta[(i + 1) % self.nqubit], i, i + 1) YY(u, theta[i] * theta[(i + 1) % self.nqubit], i, i + 1) ZZ(u, theta[i] * theta[(i + 1) % self.nqubit], i, i + 1) elif uin_type == 51: ham = np.zeros((2**self.nqubit, 2**self.nqubit), dtype=complex) for i in range(self.nqubit): J_x = x[i] ham += J_x * make_fullgate([[i, X_mat]], self.nqubit) J_xx = x[i] * x[(i + 1) % self.nqubit] J_yy = x[i] * x[(i + 1) % self.nqubit] J_zz = x[i] * x[(i + 1) % self.nqubit] ham += J_xx * make_fullgate( [[i, X_mat], [(i + 1) % self.nqubit, X_mat]], self.nqubit) ham += J_yy * make_fullgate( [[i, Y_mat], [(i + 1) % self.nqubit, Y_mat]], self.nqubit) ham += J_xx * make_fullgate( [[i, Z_mat], [(i + 1) % self.nqubit, Z_mat]], self.nqubit) diag, eigen_vecs = np.linalg.eigh(ham) time_evol_op = np.dot( np.dot(eigen_vecs, np.diag(np.exp(-1j * self.time_step * diag))), eigen_vecs.T.conj()) time_evol_gate = DenseMatrix([i for i in range(self.nqubit)], time_evol_op) u.add_gate(time_evol_gate) elif uin_type == 60: #Heisenberg hamiltonian with input coefficient # every two possible spin-conbination has interaction for i in range(self.nqubit): u.add_RX_gate(i, -2 * x[i] * self.time_step) for j in range(i + 1, self.nqubit): XX(u, theta[i] * theta[j], i, j) YY(u, theta[i] * theta[j], i, j) ZZ(u, theta[i] * theta[j], i, j) elif uin_type == 61: ham = np.zeros((2**self.nqubit, 2**self.nqubit), dtype=complex) for i in range(self.nqubit): J_x = x[i] ham += J_x * make_fullgate([[i, X_mat]], self.nqubit) for j in range(i + 1, self.nqubit): J_xx = x[i] * x[j] J_yy = x[i] * x[j] J_zz = x[i] * x[j] ham += J_xx * make_fullgate([[i, X_mat], [j, X_mat]], self.nqubit) ham += J_yy * make_fullgate([[i, Y_mat], [j, Y_mat]], self.nqubit) ham += J_xx * make_fullgate([[i, Z_mat], [j, Z_mat]], self.nqubit) diag, eigen_vecs = np.linalg.eigh(ham) time_evol_op = np.dot( np.dot(eigen_vecs, np.diag(np.exp(-1j * self.time_step * diag))), eigen_vecs.T.conj()) time_evol_gate = DenseMatrix([i for i in range(self.nqubit)], time_evol_op) u.add_gate(time_evol_gate) else: pass return u