def _extract(self): columns = [ 'W2VWeight_cosine', 'W2VWeight_euclidean', 'W2VWeight_manhattan' ] data = map_reduce(self.data, self.calculate, columns, n=4) for column in columns: self.data[column] = data[column]
def _extract(self): columns = [ 'TFIDFDistance', 'TFIDFSum_1', 'TFIDFSum_2', 'TFIDFMean_1', 'TFIDFMean_2' ] data = map_reduce(self.data, self.calculate, columns, n=4) for column in columns: self.data[column] = data[column]
def _extract(self): columns = ['NGramTFIDF_one', 'NGramTFIDF_two', 'NGramTFIDF_three'] data = map_reduce(self.data, self.calculate, columns, n=4) for column in columns: self.data[column] = data[column]
def _extract(self): columns = ['Jaccard', 'Sorensen'] data = map_reduce(self.data, self.calculate, columns, n=4) for column in columns: self.data[column] = data[column]
def _extract(self): columns = self.columns data = map_reduce(self.data, self.calculate, columns, n=4) for column in columns: self.data[column] = data[column]
def _extract(self): columns = ['SpecialConcurrence'] data = map_reduce(self.data, self.calculate, columns, n=4) for column in columns: self.data[column] = data[column]