def smesolve_generic(H, rho0, tlist, c_ops, e_ops, rhs, d1, d2, ntraj, nsubsteps): """ internal .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(tlist) N_substeps = nsubsteps N = N_store * N_substeps dt = (tlist[1] - tlist[0]) / N_substeps print("N = %d. dt=%.2e" % (N, dt)) data = Odedata() data.expect = np.zeros((len(e_ops), N_store), dtype=complex) # pre-compute collapse operator combinations that are commonly needed # when evaluating the RHS of stochastic master equations A_ops = [] for c_idx, c in enumerate(c_ops): # xxx: precompute useful operator expressions... cdc = c.dag() * c Ldt = spre(c) * spost(c.dag()) - 0.5 * spre(cdc) - 0.5 * spost(cdc) LdW = spre(c) + spost(c.dag()) Lm = spre(c) + spost(c.dag()) # currently same as LdW A_ops.append([Ldt.data, LdW.data, Lm.data]) # Liouvillian for the unitary part L = -1.0j * (spre(H) - spost(H)) # XXX: should we split the ME in stochastic # and deterministic collapse operators here? progress_acc = 0.0 for n in range(ntraj): if debug and (100 * float(n) / ntraj) >= progress_acc: print("Progress: %.2f" % (100 * float(n) / ntraj)) progress_acc += 10.0 rho_t = mat2vec(rho0.full()) states_list = _smesolve_single_trajectory( L, dt, tlist, N_store, N_substeps, rho_t, A_ops, e_ops, data, rhs, d1, d2 ) # if average -> average... data.states.append(states_list) # average data.expect = data.expect / ntraj return data
def smepdpsolve_generic(ssdata, options, progress_bar): """ For internal use. .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(ssdata.tlist) N_substeps = ssdata.nsubsteps N = N_store * N_substeps dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps NT = ssdata.ntraj data = Odedata() data.solver = "smepdpsolve" data.times = ssdata.tlist data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.jump_times = [] data.jump_op_idx = [] # Liouvillian for the deterministic part. # needs to be modified for TD systems L = liouvillian_fast(ssdata.H, ssdata.c_ops) progress_bar.start(ssdata.ntraj) for n in range(ssdata.ntraj): progress_bar.update(n) rho_t = mat2vec(ssdata.rho0.full()).ravel() states_list, jump_times, jump_op_idx = \ _smepdpsolve_single_trajectory(data, L, dt, ssdata.tlist, N_store, N_substeps, rho_t, ssdata.c_ops, ssdata.e_ops) data.states.append(states_list) data.jump_times.append(jump_times) data.jump_op_idx.append(jump_op_idx) progress_bar.finished() # average density matrices if options.average_states and np.any(data.states): data.states = [sum(state_list).unit() for state_list in data.states] # average data.expect = data.expect / ssdata.ntraj # standard error if NT > 1: data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1)) else: data.se = None return data
def smesolve_generic(H, rho0, tlist, c_ops, sc_ops, e_ops, rhs, d1, d2, d2_len, ntraj, nsubsteps, options, progress_bar): """ internal .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(tlist) N_substeps = nsubsteps N = N_store * N_substeps dt = (tlist[1] - tlist[0]) / N_substeps data = Odedata() data.solver = "smesolve" data.times = tlist data.expect = np.zeros((len(e_ops), N_store), dtype=complex) # pre-compute collapse operator combinations that are commonly needed # when evaluating the RHS of stochastic master equations A_ops = [] for c_idx, c in enumerate(sc_ops): # xxx: precompute useful operator expressions... cdc = c.dag() * c Ldt = spre(c) * spost(c.dag()) - 0.5 * spre(cdc) - 0.5 * spost(cdc) LdW = spre(c) + spost(c.dag()) Lm = spre(c) + spost(c.dag()) # currently same as LdW A_ops.append([Ldt.data, LdW.data, Lm.data]) # Liouvillian for the deterministic part L = liouvillian_fast(H, c_ops) # needs to be modified for TD systems progress_bar.start(ntraj) for n in range(ntraj): progress_bar.update(n) rho_t = mat2vec(rho0.full()) states_list = _smesolve_single_trajectory( L, dt, tlist, N_store, N_substeps, rho_t, A_ops, e_ops, data, rhs, d1, d2, d2_len) # if average -> average... data.states.append(states_list) progress_bar.finished() # average data.expect = data.expect / ntraj return data
def sepdpsolve_generic(ssdata, options, progress_bar): """ For internal use. .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(ssdata.tlist) N_substeps = ssdata.nsubsteps N = N_store * N_substeps dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps NT = ssdata.ntraj data = Odedata() data.solver = "spdpsolve" data.times = ssdata.tlist data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.jump_times = [] data.jump_op_idx = [] # effective hamiltonian for deterministic part Heff = ssdata.H for c in ssdata.c_ops: Heff += -0.5j * c.dag() * c progress_bar.start(ssdata.ntraj) for n in range(ssdata.ntraj): progress_bar.update(n) psi_t = ssdata.psi0.full() states_list, jump_times, jump_op_idx = \ _sepdpsolve_single_trajectory(Heff, dt, ssdata.tlist, N_store, N_substeps, psi_t, ssdata.c_ops, ssdata.e_ops, data) # if average -> average... data.states.append(states_list) data.jump_times.append(jump_times) data.jump_op_idx.append(jump_op_idx) progress_bar.finished() # average data.expect = data.expect / NT # standard error if NT > 1: data.ss = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1)) return data
def ssesolve_generic(H, psi0, tlist, c_ops, e_ops, rhs, d1, d2, ntraj, nsubsteps): """ internal .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(tlist) N_substeps = nsubsteps N = N_store * N_substeps dt = (tlist[1] - tlist[0]) / N_substeps print("N = %d. dt=%.2e" % (N, dt)) data = Odedata() data.expect = np.zeros((len(e_ops), N_store), dtype=complex) # pre-compute collapse operator combinations that are commonly needed # when evaluating the RHS of stochastic Schrodinger equations A_ops = [] for c_idx, c in enumerate(c_ops): A_ops.append([c.data, (c + c.dag()).data, (c.dag() * c).data]) progress_acc = 0.0 for n in range(ntraj): if debug and (100 * float(n) / ntraj) >= progress_acc: print("Progress: %.2f" % (100 * float(n) / ntraj)) progress_acc += 10.0 psi_t = psi0.full() states_list = _ssesolve_single_trajectory( H, dt, tlist, N_store, N_substeps, psi_t, A_ops, e_ops, data, rhs, d1, d2 ) # if average -> average... data.states.append(states_list) # average data.expect = data.expect / ntraj return data
def ssesolve_generic(ssdata, options, progress_bar): """ internal .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(ssdata.tlist) N_substeps = ssdata.nsubsteps N = N_store * N_substeps dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps NT = ssdata.ntraj data = Odedata() data.solver = "ssesolve" data.times = ssdata.tlist data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) # pre-compute collapse operator combinations that are commonly needed # when evaluating the RHS of stochastic Schrodinger equations A_ops = [] for c_idx, c in enumerate(ssdata.c_ops): A_ops.append([c.data, (c + c.dag()).data, (c - c.dag()).data, (c.dag() * c).data]) progress_bar.start(ssdata.ntraj) for n in range(ssdata.ntraj): progress_bar.update(n) psi_t = ssdata.state0.full() states_list = _ssesolve_single_trajectory(ssdata.H, dt, ssdata.tlist, N_store, N_substeps, psi_t, A_ops, ssdata.e_ops, data, ssdata.rhs_func, ssdata.d1, ssdata.d2, ssdata.d2_len, ssdata.homogeneous, ssdata) # if average -> average... data.states.append(states_list) progress_bar.finished() # average data.expect = data.expect / NT # standard error data.ss = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1)) return data
def _generic_ode_solve(r, psi0, tlist, expt_ops, opt, state_vectorize, state_norm_func=None): """ Internal function for solving ODEs. """ # # prepare output array # n_tsteps = len(tlist) dt = tlist[1] - tlist[0] output = Odedata() output.solver = "mesolve" output.times = tlist if isinstance(expt_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(expt_ops, list): n_expt_op = len(expt_ops) expt_callback = False if n_expt_op == 0: output.states = [] else: output.expect = [] output.num_expect = n_expt_op for op in expt_ops: if op.isherm and psi0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # psi = Qobj(psi0) t_idx = 0 for t in tlist: if not r.successful(): break if state_norm_func: psi.data = state_vectorize(r.y) state_norm = state_norm_func(psi.data) psi.data = psi.data / state_norm r.set_initial_value(r.y / state_norm, r.t) else: psi.data = state_vectorize(r.y) if expt_callback: # use callback method expt_ops(t, Qobj(psi)) else: # calculate all the expectation values, # or output rho if no operators if n_expt_op == 0: output.states.append(Qobj(psi)) # copy psi/rho else: for m in range(0, n_expt_op): output.expect[m][t_idx] = expect(expt_ops[m], psi) r.integrate(r.t + dt) t_idx += 1 if not opt.rhs_reuse and odeconfig.tdname is not None: try: os.remove(odeconfig.tdname + ".pyx") except: pass return output
def sepdpsolve_generic(ssdata, options, progress_bar): """ For internal use. .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(ssdata.tlist) N_substeps = ssdata.nsubsteps N = N_store * N_substeps dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps NT = ssdata.ntraj data = Odedata() data.solver = "sepdpsolve" data.times = ssdata.tlist data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.jump_times = [] data.jump_op_idx = [] # effective hamiltonian for deterministic part Heff = ssdata.H for c in ssdata.c_ops: Heff += -0.5j * c.dag() * c progress_bar.start(ssdata.ntraj) for n in range(ssdata.ntraj): progress_bar.update(n) psi_t = ssdata.psi0.full().ravel() states_list, jump_times, jump_op_idx = \ _sepdpsolve_single_trajectory(Heff, dt, ssdata.tlist, N_store, N_substeps, psi_t, ssdata.c_ops, ssdata.e_ops, data) data.states.append(states_list) data.jump_times.append(jump_times) data.jump_op_idx.append(jump_op_idx) progress_bar.finished() # average density matrices if options.average_states and np.any(data.states): data.states = [sum(state_list).unit() for state_list in data.states] # average data.expect = data.expect / NT # standard error if NT > 1: data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1)) else: data.se = None # convert complex data to real if hermitian data.expect = [np.real(data.expect[n,:]) if e.isherm else data.expect[n,:] for n, e in enumerate(ssdata.e_ops)] return data
def smesolve_generic(ssdata, options, progress_bar): """ internal .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(ssdata.tlist) N_substeps = ssdata.nsubsteps N = N_store * N_substeps dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps NT = ssdata.ntraj data = Odedata() data.solver = "smesolve" data.times = ssdata.tlist data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.noise = [] data.measurement = [] # pre-compute suporoperator operator combinations that are commonly needed # when evaluating the RHS of stochastic master equations A_ops = [] for c_idx, c in enumerate(ssdata.sc_ops): n = c.dag() * c A_ops.append([spre(c).data, spost(c).data, spre(c.dag()).data, spost(c.dag()).data, spre(n).data, spost(n).data, (spre(c) * spost(c.dag())).data, lindblad_dissipator(c, data_only=True)]) s_e_ops = [spre(e) for e in ssdata.e_ops] # Liouvillian for the deterministic part. # needs to be modified for TD systems L = liouvillian_fast(ssdata.H, ssdata.c_ops) progress_bar.start(ssdata.ntraj) for n in range(ssdata.ntraj): progress_bar.update(n) rho_t = mat2vec(ssdata.state0.full()).ravel() noise = ssdata.noise[n] if ssdata.noise else None states_list, dW, m = _smesolve_single_trajectory( L, dt, ssdata.tlist, N_store, N_substeps, rho_t, A_ops, s_e_ops, data, ssdata.rhs, ssdata.d1, ssdata.d2, ssdata.d2_len, ssdata.homogeneous, ssdata.distribution, ssdata.args, store_measurement=ssdata.store_measurement, store_states=ssdata.store_states, noise=noise) data.states.append(states_list) data.noise.append(dW) data.measurement.append(m) progress_bar.finished() # average density matrices if options.average_states and np.any(data.states): data.states = [sum(state_list).unit() for state_list in data.states] # average data.expect = data.expect / NT # standard error if NT > 1: data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1)) else: data.se = None # convert complex data to real if hermitian data.expect = [np.real(data.expect[n,:]) if e.isherm else data.expect[n,:] for n, e in enumerate(ssdata.e_ops)] return data
def floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None, options=None, floquet_basis=True): """ Solve the dynamics for the system using the Floquet-Markov master equation. """ if options is None: opt = Odeoptions() else: opt = options if opt.tidy: R.tidyup() # # check initial state # if isket(rho0): # Got a wave function as initial state: convert to density matrix. rho0 = ket2dm(rho0) # # prepare output array # n_tsteps = len(tlist) dt = tlist[1] - tlist[0] output = Odedata() output.solver = "fmmesolve" output.times = tlist if isinstance(e_ops, FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: output.states = [] else: if not f_modes_table: raise TypeError("The Floquet mode table has to be provided " + "when requesting expectation values.") output.expect = [] output.num_expect = n_expt_op for op in e_ops: if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # transform the initial density matrix to the eigenbasis: from # computational basis to the floquet basis # if ekets is not None: rho0 = rho0.transform(ekets, True) # # setup integrator # initial_vector = mat2vec(rho0.full()) r = scipy.integrate.ode(cy_ode_rhs) r.set_f_params(R.data.data, R.data.indices, R.data.indptr) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) # # start evolution # rho = Qobj(rho0) t_idx = 0 for t in tlist: if not r.successful(): break rho.data = vec2mat(r.y) if expt_callback: # use callback method if floquet_basis: e_ops(t, Qobj(rho)) else: f_modes_table_t, T = f_modes_table f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) e_ops(t, Qobj(rho).transform(f_modes_t, False)) else: # calculate all the expectation values, or output rho if # no operators if n_expt_op == 0: if floquet_basis: output.states.append(Qobj(rho)) else: f_modes_table_t, T = f_modes_table f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) output.states.append(Qobj(rho).transform(f_modes_t, False)) else: f_modes_table_t, T = f_modes_table f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) for m in range(0, n_expt_op): output.expect[m][t_idx] = \ expect(e_ops[m], rho.transform(f_modes_t, False)) r.integrate(r.t + dt) t_idx += 1 return output
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar): """ Internal function for solving ME. """ # # prepare output array # n_tsteps = len(tlist) dt = tlist[1] - tlist[0] e_sops_data = [] output = Odedata() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): break if opt.store_states or expt_callback: rho.data = vec2mat(r.y) if opt.store_states: output.states.append(Qobj(rho)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y) else: output.expect[m][t_idx] = np.real( expect_rho_vec(e_sops_data[m], r.y)) r.integrate(r.t + dt) progress_bar.finished() if not opt.rhs_reuse and odeconfig.tdname is not None: try: os.remove(odeconfig.tdname + ".pyx") except: pass if opt.store_final_state: rho.data = vec2mat(r.y) output.final_state = Qobj(rho) return output
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100): """ Solve the Schrodinger equation using the Floquet formalism. Parameters ---------- H : :class:`qutip.qobj.Qobj` System Hamiltonian, time-dependent with period `T`. psi0 : :class:`qutip.qobj` Initial state vector (ket). tlist : *list* / *array* list of times for :math:`t`. e_ops : list of :class:`qutip.qobj` / callback function list of operators for which to evaluate expectation values. If this list is empty, the state vectors for each time in `tlist` will be returned instead of expectation values. T : float The period of the time-dependence of the hamiltonian. args : dictionary Dictionary with variables required to evaluate H. Tsteps : integer The number of time steps in one driving period for which to precalculate the Floquet modes. `Tsteps` should be an even number. Returns ------- output : :class:`qutip.odedata.Odedata` An instance of the class :class:`qutip.odedata.Odedata`, which contains either an *array* of expectation values or an array of state vectors, for the times specified by `tlist`. """ if not T: # assume that tlist span exactly one period of the driving T = tlist[-1] # find the floquet modes for the time-dependent hamiltonian f_modes_0, f_energies = floquet_modes(H, T, args) # calculate the wavefunctions using the from the floquet modes f_modes_table_t = floquet_modes_table(f_modes_0, f_energies, np.linspace(0, T, Tsteps + 1), H, T, args) # setup Odedata for storing the results output = Odedata() output.times = tlist output.solver = "fsesolve" if isinstance(e_ops, FunctionType): output.num_expect = 0 expt_callback = True elif isinstance(e_ops, list): output.num_expect = len(e_ops) expt_callback = False if output.num_expect == 0: output.states = [] else: output.expect = [] for op in e_ops: if op.isherm: output.expect.append(np.zeros(len(tlist))) else: output.expect.append(np.zeros(len(tlist), dtype=complex)) else: raise TypeError("e_ops must be a list Qobj or a callback function") psi0_fb = psi0.transform(f_modes_0, True) for t_idx, t in enumerate(tlist): f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) f_states_t = floquet_states(f_modes_t, f_energies, t) psi_t = psi0_fb.transform(f_states_t, False) if expt_callback: # use callback method e_ops(t, psi_t) else: # calculate all the expectation values, or output psi if # no expectation value operators where defined if output.num_expect == 0: output.states.append(Qobj(psi_t)) else: for e_idx, e in enumerate(e_ops): output.expect[e_idx][t_idx] = expect(e, psi_t) return output
def _gather(sols): # gather list of Odedata objects, sols, into one. sol = Odedata() # sol = sols[0] ntraj = sum([a.ntraj for a in sols]) sol.col_times = np.zeros((ntraj), dtype=np.ndarray) sol.col_which = np.zeros((ntraj), dtype=np.ndarray) sol.col_times[0:sols[0].ntraj] = sols[0].col_times sol.col_which[0:sols[0].ntraj] = sols[0].col_which sol.states = np.array(sols[0].states) sol.expect = np.array(sols[0].expect) if (hasattr(sols[0], 'entropy')): sol.entropy = np.array(sols[0].entropy) sofar = 0 for j in range(1, len(sols)): sofar = sofar + sols[j - 1].ntraj sol.col_times[sofar:sofar + sols[j].ntraj] = ( sols[j].col_times) sol.col_which[sofar:sofar + sols[j].ntraj] = ( sols[j].col_which) if (odeconfig.e_num == 0): if (odeconfig.options.average_states): # collect states, averaged over trajectories sol.states += np.array(sols[j].states) else: # collect states, all trajectories sol.states = np.vstack((sol.states, np.array(sols[j].states))) else: if (odeconfig.options.average_expect): # collect expectation values, averaged for i in range(odeconfig.e_num): sol.expect[i] += np.array(sols[j].expect[i]) else: # collect expectation values, all trajectories sol.expect = np.vstack((sol.expect, np.array(sols[j].expect))) if (hasattr(sols[j], 'entropy')): if (odeconfig.options.average_states or odeconfig.options.average_expect): # collect entropy values, averaged sol.entropy += np.array(sols[j].entropy) else: # collect entropy values, all trajectories sol.entropy = np.vstack((sol.entropy, np.array(sols[j].entropy))) if (odeconfig.options.average_states or odeconfig.options.average_expect): if (odeconfig.e_num == 0): sol.states = sol.states / len(sols) else: sol.expect = list(sol.expect / len(sols)) inds=np.where(odeconfig.e_ops_isherm)[0] for jj in inds: sol.expect[jj]=np.real(sol.expect[jj]) if (hasattr(sols[0], 'entropy')): sol.entropy = sol.entropy / len(sols) #convert sol.expect array to list and fix dtypes of arrays if (not odeconfig.options.average_expect) and odeconfig.e_num!=0: temp=[list(sol.expect[ii]) for ii in range(ntraj)] for ii in range(ntraj): for jj in np.where(odeconfig.e_ops_isherm)[0]: temp[ii][jj]=np.real(temp[ii][jj]) sol.expect=temp # convert to list/array to be consistent with qutip mcsolve sol.states = list(sol.states) return sol
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], args={}, options=Odeoptions()): """ Solve the dynamics for the system using the Bloch-Redfeild master equation. .. note:: This solver does not currently support time-dependent Hamiltonian or collapse operators. Parameters ---------- H : :class:`qutip.qobj` System Hamiltonian. rho0 / psi0: :class:`qutip.qobj` Initial density matrix or state vector (ket). tlist : *list* / *array* List of times for :math:`t`. a_ops : list of :class:`qutip.qobj` List of system operators that couple to bath degrees of freedom. e_ops : list of :class:`qutip.qobj` / callback function List of operators for which to evaluate expectation values. args : *dictionary* Dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Qdeoptions` Options for the ODE solver. Returns ------- output: :class:`qutip.odedata` An instance of the class :class:`qutip.odedata`, which contains either a list of expectation values, for operators given in e_ops, or a list of states for the times specified by `tlist`. """ if not spectra_cb: # default to infinite temperature white noise spectra_cb = [lambda w: 1.0 for _ in a_ops] R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb) output = Odedata() output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options) if e_ops: output.expect = results else: output.states = results return output
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], args={}, options=Odeoptions()): """ Solve the dynamics for the system using the Bloch-Redfeild master equation. .. note:: This solver does not currently support time-dependent Hamiltonian or collapse operators. Parameters ---------- H : :class:`qutip.qobj` System Hamiltonian. rho0 / psi0: :class:`qutip.qobj` Initial density matrix or state vector (ket). tlist : *list* / *array* List of times for :math:`t`. a_ops : list of :class:`qutip.qobj` List of system operators that couple to bath degrees of freedom. e_ops : list of :class:`qutip.qobj` / callback function List of operators for which to evaluate expectation values. args : *dictionary* Dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Qdeoptions` Options for the ODE solver. Returns ------- output: :class:`qutip.odedata` An instance of the class :class:`qutip.odedata`, which contains either a list of expectation values, for operators given in e_ops, or a list of states for the times specified by `tlist`. """ if not spectra_cb: # default to infinite temperature white noise spectra_cb = [lambda w: 1.0 for _ in a_ops] R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb) output = Odedata() output.solver = "brmesolve" output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options) if e_ops: output.expect = results else: output.states = results return output
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar): """ Internal function for solving ME. """ # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Odedata() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): break if opt.store_states or expt_callback: rho.data = vec2mat(r.y) if opt.store_states: output.states.append(Qobj(rho)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 0) else: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 1) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and odeconfig.tdname is not None: try: os.remove(odeconfig.tdname + ".pyx") except: pass if opt.store_final_state: rho.data = vec2mat(r.y) output.final_state = Qobj(rho) return output
def mcsolve(H,psi0,tlist,c_ops,e_ops,ntraj=500,args={},options=Odeoptions()): """Monte-Carlo evolution of a state vector :math:`|\psi \\rangle` for a given Hamiltonian and sets of collapse operators, and possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by the Odeoptions class. mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one constant term. As an example of a time-dependent problem, consider a Hamiltonian with two terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is time-dependent with coeffcient ``exp(-a*t)``. Here, w and a are constant arguments with values ``W`` and ``A``. Using the Python function time-dependent format requires two Python functions, one for each collapse coefficient. Therefore, this problem could be expressed as:: def H1_coeff(t,args): return sin(args['w']*t) def C1_coeff(t,args): return exp(-args['a']*t) H=[H0,[H1,H1_coeff]] c_op_list=[C0,[C1,C1_coeff]] args={'a':A,'w':W} or in String (Cython) format we could write:: H=[H0,[H1,'sin(w*t)']] c_op_list=[C0,[C1,'exp(-a*t)']] args={'a':A,'w':W} Constant terms are preferably placed first in the Hamiltonian and collapse operator lists. Parameters ---------- H : qobj System Hamiltonian. psi0 : qobj Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like single collapse operator or ``list`` or ``array`` of collapse operators. e_ops : array_like single operator or ``list`` or ``array`` of operators for calculating expectation values. args : dict Arguments for time-dependent Hamiltonian and collapse operator terms. options : Odeoptions Instance of ODE solver options. Returns ------- results : Odedata Object storing all results from simulation. """ # if single operator is passed for c_ops or e_ops, convert it to # list containing only that operator if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if psi0.type!='ket': raise Exception("Initial state must be a state vector.") odeconfig.options=options #set num_cpus to the value given in qutip.settings if none in Odeoptions if not odeconfig.options.num_cpus: odeconfig.options.num_cpus=qutip.settings.num_cpus #set initial value data if options.tidy: odeconfig.psi0=psi0.tidyup(options.atol).full() else: odeconfig.psi0=psi0.full() odeconfig.psi0_dims=psi0.dims odeconfig.psi0_shape=psi0.shape #set general items odeconfig.tlist=tlist if isinstance(ntraj,(list,ndarray)): odeconfig.ntraj=sort(ntraj)[-1] else: odeconfig.ntraj=ntraj #set norm finding constants odeconfig.norm_tol=options.norm_tol odeconfig.norm_steps=options.norm_steps #---- #---------------------------------------------- # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING #---------------------------------------------- if (not options.rhs_reuse) or (not odeconfig.tdfunc): #reset odeconfig collapse and time-dependence flags to default values _reset_odeconfig() #check for type of time-dependence (if any) time_type,h_stuff,c_stuff=_ode_checks(H,c_ops,'mc') h_terms=len(h_stuff[0])+len(h_stuff[1])+len(h_stuff[2]) c_terms=len(c_stuff[0])+len(c_stuff[1])+len(c_stuff[2]) #set time_type for use in multiprocessing odeconfig.tflag=time_type #-Check for PyObjC on Mac platforms if sys.platform=='darwin' and odeconfig.options.gui: try: import Foundation except: odeconfig.options.gui=False #check if running in iPython and using Cython compiling (then no GUI to work around error) if odeconfig.options.gui and odeconfig.tflag in array([1,10,11]): try: __IPYTHON__ except: pass else: odeconfig.options.gui=False if qutip.settings.qutip_gui=="NONE": odeconfig.options.gui=False #check for collapse operators if c_terms>0: odeconfig.cflag=1 else: odeconfig.cflag=0 #Configure data _mc_data_config(H,psi0,h_stuff,c_ops,c_stuff,args,e_ops,options) if odeconfig.tflag in array([1,10,11]): #compile time-depdendent RHS code os.environ['CFLAGS'] = '-O3 -w' import pyximport pyximport.install(setup_args={'include_dirs':[numpy.get_include()]}) if odeconfig.tflag in array([1,11]): code = compile('from '+odeconfig.tdname+' import cyq_td_ode_rhs,col_spmv,col_expect', '<string>', 'exec') exec(code, globals()) odeconfig.tdfunc=cyq_td_ode_rhs odeconfig.colspmv=col_spmv odeconfig.colexpect=col_expect else: code = compile('from '+odeconfig.tdname+' import cyq_td_ode_rhs', '<string>', 'exec') exec(code, globals()) odeconfig.tdfunc=cyq_td_ode_rhs try: os.remove(odeconfig.tdname+".pyx") except: print("Error removing pyx file. File not found.") elif odeconfig.tflag==0: odeconfig.tdfunc=cyq_ode_rhs else:#setup args for new parameters when rhs_reuse=True and tdfunc is given #string based if odeconfig.tflag in array([1,10,11]): if any(args): odeconfig.c_args=[] arg_items=args.items() for k in range(len(args)): odeconfig.c_args.append(arg_items[k][1]) #function based elif odeconfig.tflag in array([2,3,20,22]): odeconfig.h_func_args=args #load monte-carlo class mc=_MC_class() #RUN THE SIMULATION mc.run() #AFTER MCSOLVER IS DONE -------------------------------------- #-------COLLECT AND RETURN OUTPUT DATA IN ODEDATA OBJECT --------------# output=Odedata() output.solver='mcsolve' #state vectors if mc.psi_out is not None and odeconfig.options.mc_avg and odeconfig.cflag: output.states=parfor(_mc_dm_avg,mc.psi_out.T) elif mc.psi_out is not None: output.states=mc.psi_out #expectation values elif mc.expect_out is not None and odeconfig.cflag and odeconfig.options.mc_avg:#averaging if multiple trajectories if isinstance(ntraj,int): output.expect=mean(mc.expect_out,axis=0) elif isinstance(ntraj,(list,ndarray)): output.expect=[] for num in ntraj: expt_data=mean(mc.expect_out[:num],axis=0) data_list=[] if any([op.isherm==False for op in e_ops]): for k in range(len(e_ops)): if e_ops[k].isherm: data_list.append(real(expt_data[k])) else: data_list.append(expt_data[k]) else: data_list=[data for data in expt_data] output.expect.append(data_list) else:#no averaging for single trajectory or if mc_avg flag (Odeoptions) is off if mc.expect_out is not None: output.expect=mc.expect_out #simulation parameters output.times=odeconfig.tlist output.num_expect=odeconfig.e_num output.num_collapse=odeconfig.c_num output.ntraj=odeconfig.ntraj output.col_times=mc.collapse_times_out output.col_which=mc.which_op_out return output
def evolve_serial(self, args): if debug: print(inspect.stack()[0][3] + ":" + str(os.getpid())) # run ntraj trajectories for one process via fortran # get args queue, ntraj, instanceno, rngseed = args # initialize the problem in fortran _init_tlist() _init_psi0() if (self.ptrace_sel != []): _init_ptrace_stuff(self.ptrace_sel) _init_hamilt() if (odeconfig.c_num != 0): _init_c_ops() if (odeconfig.e_num != 0): _init_e_ops() # set options qtf90.qutraj_run.n_c_ops = odeconfig.c_num qtf90.qutraj_run.n_e_ops = odeconfig.e_num qtf90.qutraj_run.ntraj = ntraj qtf90.qutraj_run.unravel_type = self.unravel_type qtf90.qutraj_run.average_states = odeconfig.options.average_states qtf90.qutraj_run.average_expect = odeconfig.options.average_expect qtf90.qutraj_run.init_odedata(odeconfig.psi0_shape[0], odeconfig.options.atol, odeconfig.options.rtol, mf=self.mf, norm_steps=odeconfig.norm_steps, norm_tol=odeconfig.norm_tol) # set optional arguments qtf90.qutraj_run.order = odeconfig.options.order qtf90.qutraj_run.nsteps = odeconfig.options.nsteps qtf90.qutraj_run.first_step = odeconfig.options.first_step qtf90.qutraj_run.min_step = odeconfig.options.min_step qtf90.qutraj_run.max_step = odeconfig.options.max_step qtf90.qutraj_run.norm_steps = odeconfig.options.norm_steps qtf90.qutraj_run.norm_tol = odeconfig.options.norm_tol # use sparse density matrices during computation? qtf90.qutraj_run.rho_return_sparse = self.sparse_dms # calculate entropy of reduced density matrice? qtf90.qutraj_run.calc_entropy = self.calc_entropy # run show_progress = 1 if debug else 0 qtf90.qutraj_run.evolve(instanceno, rngseed, show_progress) # construct Odedata instance sol = Odedata() sol.ntraj = ntraj # sol.col_times = qtf90.qutraj_run.col_times # sol.col_which = qtf90.qutraj_run.col_which-1 sol.col_times, sol.col_which = self.get_collapses(ntraj) if (odeconfig.e_num == 0): sol.states = self.get_states(len(odeconfig.tlist), ntraj) else: sol.expect = self.get_expect(len(odeconfig.tlist), ntraj) if (self.calc_entropy): sol.entropy = self.get_entropy(len(odeconfig.tlist)) if (not self.serial_run): # put to queue queue.put(sol) queue.join() # deallocate stuff # finalize() return sol
def brmesolve(H, psi0, tlist, c_ops, e_ops=[], spectra_cb=[], args={}, options=Odeoptions()): """ Solve the dynamics for the system using the Bloch-Redfeild master equation. .. note:: This solver does not currently support time-dependent Hamiltonian or collapse operators. Parameters ---------- H : :class:`qutip.qobj` System Hamiltonian. rho0 / psi0: :class:`qutip.qobj` Initial density matrix or state vector (ket). tlist : *list* / *array* List of times for :math:`t`. c_ops : list of :class:`qutip.qobj` List of collapse operators. expt_ops : list of :class:`qutip.qobj` / callback function List of operators for which to evaluate expectation values. args : *dictionary* Dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Qdeoptions` Options for the ODE solver. Returns ------- output: :class:`qutip.odedata` An instance of the class :class:`qutip.odedata`, which contains either an *array* of expectation values for the times specified by `tlist`. """ if len(spectra_cb) == 0: for n in range(len(c_ops)): # add white noise callbacks if absent spectra_cb.append(lambda w: 1.0) R, ekets = bloch_redfield_tensor(H, c_ops, spectra_cb) output = Odedata() output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options) if len(e_ops): output.expect = results else: output.states = results return output
def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None, options=Odeoptions(), sparse_dms=True, serial=False, ptrace_sel=[], calc_entropy=False): """ Monte-Carlo wave function solver with fortran 90 backend. Usage is identical to qutip.mcsolve, for problems without explicit time-dependence, and with some optional input: Parameters ---------- H : qobj System Hamiltonian. psi0 : qobj Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like ``list`` or ``array`` of collapse operators. e_ops : array_like ``list`` or ``array`` of operators for calculating expectation values. options : Odeoptions Instance of ODE solver options. sparse_dms : boolean If averaged density matrices are returned, they will be stored as sparse (Compressed Row Format) matrices during computation if sparse_dms = True (default), and dense matrices otherwise. Dense matrices might be preferable for smaller systems. serial : boolean If True (default is False) the solver will not make use of the multiprocessing module, and simply run in serial. ptrace_sel: list This optional argument specifies a list of components to keep when returning a partially traced density matrix. This can be convenient for large systems where memory becomes a problem, but you are only interested in parts of the density matrix. calc_entropy : boolean If ptrace_sel is specified, calc_entropy=True will have the solver return the averaged entropy over trajectories in results.entropy. This can be interpreted as a measure of entanglement. See Phys. Rev. Lett. 93, 120408 (2004), Phys. Rev. A 86, 022310 (2012). Returns ------- results : Odedata Object storing all results from simulation. """ if ntraj is None: ntraj = options.ntraj if psi0.type != 'ket': raise Exception("Initial state must be a state vector.") odeconfig.options = options # set num_cpus to the value given in qutip.settings # if none in Odeoptions if not odeconfig.options.num_cpus: odeconfig.options.num_cpus = qutip.settings.num_cpus # set initial value data if options.tidy: odeconfig.psi0 = psi0.tidyup(options.atol).full() else: odeconfig.psi0 = psi0.full() odeconfig.psi0_dims = psi0.dims odeconfig.psi0_shape = psi0.shape # set general items odeconfig.tlist = tlist if isinstance(ntraj, (list, np.ndarray)): raise Exception("ntraj as list argument is not supported.") else: odeconfig.ntraj = ntraj # ntraj_list = [ntraj] # set norm finding constants odeconfig.norm_tol = options.norm_tol odeconfig.norm_steps = options.norm_steps if not options.rhs_reuse: odeconfig.soft_reset() # no time dependence odeconfig.tflag = 0 # check for collapse operators if len(c_ops) > 0: odeconfig.cflag = 1 else: odeconfig.cflag = 0 # Configure data _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, odeconfig) # Load Monte Carlo class mc = _MC_class() # Set solver type if (options.method == 'adams'): mc.mf = 10 elif (options.method == 'bdf'): mc.mf = 22 else: if debug: print('Unrecognized method for ode solver, using "adams".') mc.mf = 10 # store ket and density matrix dims and shape for convenience mc.psi0_dims = psi0.dims mc.psi0_shape = psi0.shape mc.dm_dims = (psi0 * psi0.dag()).dims mc.dm_shape = (psi0 * psi0.dag()).shape # use sparse density matrices during computation? mc.sparse_dms = sparse_dms # run in serial? mc.serial_run = serial or (ntraj == 1) # are we doing a partial trace for returned states? mc.ptrace_sel = ptrace_sel if (ptrace_sel != []): if debug: print("ptrace_sel set to " + str(ptrace_sel)) print("We are using dense density matrices during computation " + "when performing partial trace. Setting sparse_dms = False") print("This feature is experimental.") mc.sparse_dms = False mc.dm_dims = psi0.ptrace(ptrace_sel).dims mc.dm_shape = psi0.ptrace(ptrace_sel).shape if (calc_entropy): if (ptrace_sel == []): if debug: print("calc_entropy = True, but ptrace_sel = []. Please set " + "a list of components to keep when calculating average " + "entropy of reduced density matrix in ptrace_sel. " + "Setting calc_entropy = False.") calc_entropy = False mc.calc_entropy = calc_entropy # construct output Odedata object output = Odedata() # Run mc.run() output.states = mc.sol.states output.expect = mc.sol.expect output.col_times = mc.sol.col_times output.col_which = mc.sol.col_which if (hasattr(mc.sol, 'entropy')): output.entropy = mc.sol.entropy output.solver = 'Fortran 90 Monte Carlo solver' # simulation parameters output.times = odeconfig.tlist output.num_expect = odeconfig.e_num output.num_collapse = odeconfig.c_num output.ntraj = odeconfig.ntraj return output
def essolve(H, rho0, tlist, c_op_list, e_ops): """ Evolution of a state vector or density matrix (`rho0`) for a given Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by expressing the ODE as an exponential series. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). Parameters ---------- H : qobj/function_type System Hamiltonian. rho0 : :class:`qutip.qobj` Initial state density matrix. tlist : list/array ``list`` of times for :math:`t`. c_op_list : list of :class:`qutip.qobj` ``list`` of :class:`qutip.qobj` collapse operators. e_ops : list of :class:`qutip.qobj` ``list`` of :class:`qutip.qobj` operators for which to evaluate expectation values. Returns ------- expt_array : array Expectation values of wavefunctions/density matrices for the times specified in ``tlist``. .. note:: This solver does not support time-dependent Hamiltonians. """ n_expt_op = len(e_ops) n_tsteps = len(tlist) # Calculate the Liouvillian if (c_op_list is None or len(c_op_list) == 0) and isket(rho0): L = H else: L = liouvillian(H, c_op_list) es = ode2es(L, rho0) # evaluate the expectation values if n_expt_op == 0: result_list = [Qobj()] * n_tsteps # XXX else: result_list = np.zeros([n_expt_op, n_tsteps], dtype=complex) for n, e in enumerate(e_ops): result_list[n, :] = expect(e, esval(es, tlist)) data = Odedata() data.solver = "essolve" data.times = tlist data.expect = [np.real(result_list[n, :]) if e.isherm else result_list[n, :] for n, e in enumerate(e_ops)] return data
def ssesolve_generic(ssdata, options, progress_bar): """ internal .. note:: Experimental. """ if debug: print(inspect.stack()[0][3]) N_store = len(ssdata.tlist) N_substeps = ssdata.nsubsteps N = N_store * N_substeps dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps NT = ssdata.ntraj data = Odedata() data.solver = "ssesolve" data.times = ssdata.tlist data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex) data.noise = [] data.measurement = [] # pre-compute collapse operator combinations that are commonly needed # when evaluating the RHS of stochastic Schrodinger equations A_ops = [] for c_idx, c in enumerate(ssdata.sc_ops): A_ops.append([c.data, (c + c.dag()).data, (c - c.dag()).data, (c.dag() * c).data]) progress_bar.start(ssdata.ntraj) for n in range(ssdata.ntraj): progress_bar.update(n) psi_t = ssdata.state0.full().ravel() noise = ssdata.noise[n] if ssdata.noise else None states_list, dW, m = _ssesolve_single_trajectory( ssdata.H, dt, ssdata.tlist, N_store, N_substeps, psi_t, A_ops, ssdata.e_ops, data, ssdata.rhs_func, ssdata.d1, ssdata.d2, ssdata.d2_len, ssdata.homogeneous, ssdata.distribution, ssdata.args, store_measurement=ssdata.store_measurement, noise=noise) data.states.append(states_list) data.noise.append(dW) data.measurement.append(m) progress_bar.finished() # average density matrices if options.average_states and np.any(data.states): data.states = [sum(state_list).unit() for state_list in data.states] # average data.expect = data.expect / NT # standard error if NT > 1: data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1)) else: data.se = None # convert complex data to real if hermitian data.expect = [np.real(data.expect[n,:]) if e.isherm else data.expect[n,:] for n, e in enumerate(ssdata.e_ops)] return data
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, state_norm_func=None, dims=None): """ Internal function for solving ODEs. """ # # prepare output array # n_tsteps = len(tlist) output = Odedata() output.solver = "sesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fallback on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): break if state_norm_func: data = r.y / state_norm_func(r.y) r.set_initial_value(data, r.t) if opt.store_states: output.states.append(Qobj(r.y,dims=dims)) if expt_callback: # use callback method e_ops(t, Qobj(r.y, dims=psi0.dims)) for m in range(n_expt_op): output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data, r.y, e_ops[m].isherm) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and odeconfig.tdname is not None: try: os.remove(odeconfig.tdname + ".pyx") except: pass if opt.store_final_state: output.final_state = Qobj(r.y) return output