コード例 #1
0
ファイル: ijfact1.py プロジェクト: johannesgerer/jburkardt-py
def ijfact1_determinant ( n ):

#*****************************************************************************80
#
## IJFACT1_DETERMINANT computes the determinant of the IJFACT1 matrix.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    15 February 2015
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer N, the order of the matrix.
#
#    Output, real VALUE, the determinant.
#
  from r8_factorial import r8_factorial

  value = 1.0

  for i in range ( 1, n ):
    value = value * r8_factorial ( i + 1 ) * r8_factorial ( n - i )

  value = value * r8_factorial ( n + 1 )

  return value
コード例 #2
0
def ijfact1_determinant(n):

    #*****************************************************************************80
    #
    ## IJFACT1_DETERMINANT computes the determinant of the IJFACT1 matrix.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    15 February 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Parameters:
    #
    #    Input, integer N, the order of the matrix.
    #
    #    Output, real VALUE, the determinant.
    #
    from r8_factorial import r8_factorial

    value = 1.0

    for i in range(1, n):
        value = value * r8_factorial(i + 1) * r8_factorial(n - i)

    value = value * r8_factorial(n + 1)

    return value
コード例 #3
0
def laguerre_determinant ( n ):

#*****************************************************************************80
#
## LAGUERRE_DETERMINANT computes the determinant of the LAGUERRE matrix.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    17 February 2015
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer N, the order of the matrix.
#
#    Output, real VALUE, the determinant.
#
  from r8_factorial import r8_factorial

  value = 1.0
  p = + 1.0
  for i in range ( 0, n ):
    value = value * p / r8_factorial ( i )
    p = - p

  return value
コード例 #4
0
ファイル: laguerre.py プロジェクト: wangwt9907/jburkardt-py
def laguerre_determinant(n):

    #*****************************************************************************80
    #
    ## LAGUERRE_DETERMINANT computes the determinant of the LAGUERRE matrix.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    17 February 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Parameters:
    #
    #    Input, integer N, the order of the matrix.
    #
    #    Output, real VALUE, the determinant.
    #
    from r8_factorial import r8_factorial

    value = 1.0
    p = +1.0
    for i in range(0, n):
        value = value * p / r8_factorial(i)
        p = -p

    return value
コード例 #5
0
ファイル: carry.py プロジェクト: wangwt9907/jburkardt-py
def carry_inverse(n, alpha):

    #*****************************************************************************80
    #
    ## CARRY_INVERSE returns the inverse of the CARRY matrix.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    24 March 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Parameters:
    #
    #    Input, integer ALPHA, the numeric base used in the addition.
    #
    #    Input, integer ALPHA, the numeric base used in the addition.
    #
    #    Output, real A(N,N), the matrix.
    #
    from diagonal import diagonal
    from r8_factorial import r8_factorial
    from r8mat_mm import r8mat_mm

    v = carry_eigen_left(n, alpha)

    d = carry_eigenvalues(n, alpha)
    for i in range(0, n):
        d[i] = 1.0 / d[i]
    d_inv = diagonal(n, n, d)

    u = carry_eigen_right(n, alpha)

    dv = r8mat_mm(n, n, n, d_inv, v)

    a = r8mat_mm(n, n, n, u, dv)

    t = r8_factorial(n)
    for j in range(0, n):
        for i in range(0, n):
            a[i, j] = a[i, j] / t

    return a
コード例 #6
0
ファイル: carry.py プロジェクト: johannesgerer/jburkardt-py
def carry_inverse ( n, alpha ):

#*****************************************************************************80
#
## CARRY_INVERSE returns the inverse of the CARRY matrix.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    24 March 2015
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer ALPHA, the numeric base used in the addition.
#
#    Input, integer ALPHA, the numeric base used in the addition.
#
#    Output, real A(N,N), the matrix.
#
  from diagonal import diagonal
  from r8_factorial import r8_factorial
  from r8mat_mm import r8mat_mm

  v = carry_eigen_left ( n, alpha )

  d = carry_eigenvalues ( n, alpha )
  for i in range ( 0, n ):
    d[i] = 1.0 / d[i]
  d_inv = diagonal ( n, n, d )

  u = carry_eigen_right ( n, alpha )

  dv = r8mat_mm ( n, n, n, d_inv, v )

  a = r8mat_mm ( n, n, n, u, dv )

  t = r8_factorial ( n )
  for j in range ( 0, n ):
    for i in range ( 0, n ):
      a[i,j] = a[i,j] / t

  return a
コード例 #7
0
def legendre_associated_normalized(n, m, x):

    #*****************************************************************************80
    #
    ## LEGENDRE_ASSOCIATED_NORMALIZED evaluates the associated Legendre functions.
    #
    #  Discussion:
    #
    #    The unnormalized associated Legendre functions P_N^M(X) have
    #    the property that
    #
    #      Integral ( -1 <= X <= 1 ) ( P_N^M(X) )^2 dX
    #      = 2 * ( N + M )! / ( ( 2 * N + 1 ) * ( N - M )! )
    #
    #    By dividing the function by the square root of this term,
    #    the normalized associated Legendre functions have norm 1.
    #
    #    However, we plan to use these functions to build spherical
    #    harmonics, so we use a slightly different normalization factor of
    #
    #      sqrt ( ( ( 2 * N + 1 ) * ( N - M )! ) / ( 4 * pi * ( N + M )! ) )
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    20 February 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Reference:
    #
    #    Milton Abramowitz and Irene Stegun,
    #    Handbook of Mathematical Functions,
    #    US Department of Commerce, 1964.
    #
    #  Parameters:
    #
    #    Input, integer N, the maximum first index of the Legendre
    #    function, which must be at least 0.
    #
    #    Input, integer M, the second index of the Legendre function,
    #    which must be at least 0, and no greater than N.
    #
    #    Input, real X, the point at which the function is to be
    #    evaluated.  X must satisfy -1 <= X <= 1.
    #
    #    Output, real CX(1:N+1), the values of the first N+1 function.
    #
    import numpy as np
    from r8_factorial import r8_factorial

    if (m < 0):
        print ''
        print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
        print '  Input value of M is %d' % (m)
        print '  but M must be nonnegative.'

    if (n < m):
        print ''
        print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
        print '  Input value of M = %d' % (m)
        print '  Input value of N = %d' % (n)
        print '  but M must be less than or equal to N.'

    if (x < -1.0):
        print ''
        print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
        print '  Input value of X = %f' % (x)
        print '  but X must be no less than -1.'

    if (1.0 < x):
        print ''
        print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
        print '  Input value of X = %f' % (x)
        print '  but X must be no more than 1.'

    cx = np.zeros(n + 1)

    cx[m] = 1.0
    somx2 = np.sqrt(1.0 - x * x)

    fact = 1.0
    for i in range(0, m):
        cx[m] = -cx[m] * fact * somx2
        fact = fact + 2.0

    if (m != n):

        cx[m + 1] = x * float(2 * m + 1) * cx[m]

        for i in range(m + 2, n + 1):
            cx[i] = ( float ( 2 * i     - 1 ) * x * cx[i-1] \
                    + float (   - i - m + 1 ) *     cx[i-2] ) \
                    / float (     i - m     )


#
#  Normalization.
#
    for mm in range(m, n + 1):

        factor = np.sqrt ( ( ( 2 * mm + 1 ) * r8_factorial ( mm - m ) ) \
          / ( 4.0 * np.pi * r8_factorial ( mm + m ) ) )

        cx[mm] = cx[mm] * factor

    return cx
コード例 #8
0
ファイル: ijfact2.py プロジェクト: johannesgerer/jburkardt-py
def ijfact2 ( n ):

#*****************************************************************************80
#
## IJFACT2 returns the IJFACT2 matrix.
#
#  Formula:
#
#    A(I,J) = 1 / ( (I+J)! )
#
#  Example:
#
#    N = 4
#
#   1/2   1/6   1/24   1/120
#   1/6   1/24  1/120  1/720
#   1/24  1/120 1/720  1/5040
#   1/120 1/720 1/5040 1/40320
#
#  Properties:
#
#    A is symmetric: A' = A.
#
#    Because A is symmetric, it is normal.
#
#    Because A is normal, it is diagonalizable.
#
#    A is a Hankel matrix: constant along anti-diagonals.
#
#    A is integral: int ( A ) = A.
#
#    The family of matrices is nested as a function of N.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    15 February 2015
#
#  Author:
#
#    John Burkardt
#
#  Reference:
#
#    MJC Gover,
#    The explicit inverse of factorial Hankel matrices,
#    Department of Mathematics, University of Bradford, 1993.
#
#  Parameters:
#
#    Input, integer N, the order of the matrix.
#
#    Output, real A(N,N), the matrix.
#
  import numpy as np
  from r8_factorial import r8_factorial

  a = np.zeros ( [ n, n ] )
  for i in range ( 0, n ):
    for j in range ( 0, n ):
      a[i,j] = 1.0 / r8_factorial ( i + j + 2 )

  return a
コード例 #9
0
def simplex_coordinates2_test(m):

    #*****************************************************************************80
    #
    ## SIMPLEX_COORDINATES2_TEST tests SIMPLEX_COORDINATES2.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    28 June 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Parameters:
    #
    #    Input, integer M, the spatial dimension.
    #
    import numpy as np
    import platform
    import r8_factorial
    import r8mat_transpose_print
    from simplex_volume import simplex_volume

    print('')
    print('SIMPLEX_COORDINATES2_TEST')
    print('  Python version: %s' % (platform.python_version()))
    print('  Test SIMPLEX_COORDINATES2')

    x = simplex_coordinates2(m)

    #r8mat_transpose_print.r8mat_transpose_print ( m, m + 1, x, '  Simplex vertex coordinates:' )

    s = 0.0
    for i in range(0, m):
        s = s + (x[i, 0] - x[i, 1])**2

    side = np.sqrt(s)

    #volume = simplex_volume ( m, x )

    volume2 = np.sqrt(m + 1) / r8_factorial.r8_factorial(m) / np.sqrt(
        2.0**m) * side**m

    print('')
    print('  Side length =     %g' % (side))
    print('  Volume =          %g' % (volume2))
    print('  Expected volume = %g' % (volume2))

    xtx = np.dot(np.transpose(x), x)
    print(xtx)

    #r8mat_transpose_print.r8mat_transpose_print ( m + 1, m + 1, xtx, '  Dot product matrix:' )
    #
    #  Terminate.
    #
    print('')
    print('SIMPLEX_COORDINATES2_TEST')
    print('  Normal end of execution.')
    return
コード例 #10
0
def ijfact1(n):

    #*****************************************************************************80
    #
    ## IJFACT1 returns the IJFACT1 matrix.
    #
    #  Formula:
    #
    #    A(I,J) = (I+J)!
    #
    #  Example:
    #
    #    N = 4
    #
    #     2   6   24   120
    #     6  24  120   720
    #    24 120  720  5040
    #   120 720 5040 40320
    #
    #  Properties:
    #
    #    A is symmetric: A' = A.
    #
    #    Because A is symmetric, it is normal.
    #
    #    Because A is normal, it is diagonalizable.
    #
    #    A is a Hankel matrix: constant along anti-diagonals.
    #
    #    A is integral: int ( A ) = A.
    #
    #    The family of matrices is nested as a function of N.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    15 February 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Reference:
    #
    #    MJC Gover,
    #    The explicit inverse of factorial Hankel matrices,
    #    Department of Mathematics, University of Bradford, 1993.
    #
    #  Parameters:
    #
    #    Input, integer N, the order of the matrix.
    #
    #    Output, real A(N,N), the matrix.
    #
    import numpy as np
    from r8_factorial import r8_factorial

    a = np.zeros([n, n])
    for i in range(0, n):
        for j in range(0, n):
            a[i, j] = r8_factorial(i + j + 2)

    return a
コード例 #11
0
def legendre_associated_normalized ( n, m, x ):

#*****************************************************************************80
#
## LEGENDRE_ASSOCIATED_NORMALIZED evaluates the associated Legendre functions.
#
#  Discussion:
#
#    The unnormalized associated Legendre functions P_N^M(X) have
#    the property that
#
#      Integral ( -1 <= X <= 1 ) ( P_N^M(X) )^2 dX
#      = 2 * ( N + M )! / ( ( 2 * N + 1 ) * ( N - M )! )
#
#    By dividing the function by the square root of this term,
#    the normalized associated Legendre functions have norm 1.
#
#    However, we plan to use these functions to build spherical
#    harmonics, so we use a slightly different normalization factor of
#
#      sqrt ( ( ( 2 * N + 1 ) * ( N - M )! ) / ( 4 * pi * ( N + M )! ) )
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    20 February 2015
#
#  Author:
#
#    John Burkardt
#
#  Reference:
#
#    Milton Abramowitz and Irene Stegun,
#    Handbook of Mathematical Functions,
#    US Department of Commerce, 1964.
#
#  Parameters:
#
#    Input, integer N, the maximum first index of the Legendre
#    function, which must be at least 0.
#
#    Input, integer M, the second index of the Legendre function,
#    which must be at least 0, and no greater than N.
#
#    Input, real X, the point at which the function is to be
#    evaluated.  X must satisfy -1 <= X <= 1.
#
#    Output, real CX(1:N+1), the values of the first N+1 function.
#
  import numpy as np
  from r8_factorial import r8_factorial

  if ( m < 0 ):
    print ''
    print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
    print '  Input value of M is %d' % ( m )
    print '  but M must be nonnegative.'
 
  if ( n < m ):
    print ''
    print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
    print '  Input value of M = %d' % ( m )
    print '  Input value of N = %d' % ( n )
    print '  but M must be less than or equal to N.'
 
  if ( x < -1.0 ):
    print ''
    print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
    print '  Input value of X = %f' % ( x )
    print '  but X must be no less than -1.'

  if ( 1.0 < x ):
    print ''
    print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!'
    print '  Input value of X = %f' % ( x )
    print '  but X must be no more than 1.'
  
  cx = np.zeros ( n + 1 )

  cx[m] = 1.0
  somx2 = np.sqrt ( 1.0 - x * x )
 
  fact = 1.0
  for i in range ( 0, m ):
    cx[m] = - cx[m] * fact * somx2
    fact = fact + 2.0
 
  if ( m != n ):

    cx[m+1] = x * float ( 2 * m + 1 ) * cx[m]

    for i in range ( m + 2, n + 1 ):
      cx[i] = ( float ( 2 * i     - 1 ) * x * cx[i-1] \
              + float (   - i - m + 1 ) *     cx[i-2] ) \
              / float (     i - m     )
#
#  Normalization.
#
  for mm in range ( m, n + 1 ):

    factor = np.sqrt ( ( ( 2 * mm + 1 ) * r8_factorial ( mm - m ) ) \
      / ( 4.0 * np.pi * r8_factorial ( mm + m ) ) )

    cx[mm] = cx[mm] * factor

  return cx
コード例 #12
0
def bernoulli_number3 ( n ):

#*****************************************************************************80
#
## BERNOULLI_NUMBER3 computes the value of the Bernoulli number B(N).
#
#  Discussion:
#
#    The Bernoulli numbers are rational.
#
#    If we define the sum of the M-th powers of the first N integers as:
#
#      SIGMA(M,N) = sum ( 0 <= I <= N ) I^M
#
#    and let C(I,J) be the combinatorial coefficient:
#
#      C(I,J) = I! / ( ( I - J )! * J! )
#
#    then the Bernoulli numbers B(J) satisfy:
#
#      SIGMA(M,N) = 1/(M+1) * sum ( 0 <= J <= M ) C(M+1,J) B(J) * (N+1)^(M+1-J)
#
#  First values:
#
#     B0  1                   =         1.00000000000
#     B1 -1/2                 =        -0.50000000000
#     B2  1/6                 =         1.66666666666
#     B3  0                   =         0
#     B4 -1/30                =        -0.03333333333
#     B5  0                   =         0
#     B6  1/42                =         0.02380952380
#     B7  0                   =         0
#     B8 -1/30                =        -0.03333333333
#     B9  0                   =         0
#    B10  5/66                =         0.07575757575
#    B11  0                   =         0
#    B12 -691/2730            =        -0.25311355311
#    B13  0                   =         0
#    B14  7/6                 =         1.16666666666
#    B15  0                   =         0
#    B16 -3617/510            =        -7.09215686274
#    B17  0                   =         0
#    B18  43867/798           =        54.97117794486
#    B19  0                   =         0
#    B20 -174611/330          =      -529.12424242424
#    B21  0                   =         0
#    B22  854513/138          =      6192.123
#    B23  0                   =         0
#    B24 -236364091/2730      =    -86580.257
#    B25  0                   =         0
#    B26  8553103/6           =   1425517.16666
#    B27  0                   =         0
#    B28 -23749461029/870     = -27298231.0678
#    B29  0                   =         0
#    B30  8615841276005/14322 = 601580873.901
#
#  Recursion:
#
#    With C(N+1,K) denoting the standard binomial coefficient,
#
#    B(0) = 1.0
#    B(N) = - ( sum ( 0 <= K < N ) C(N+1,K) * B(K) ) / C(N+1,N)
#
#  Special Values:
#
#    Except for B(1), all Bernoulli numbers of odd index are 0.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    27 December 2014
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer N, the order of the Bernoulli number to compute.
#
#    Output, real B, the desired Bernoulli number.
#
  from r8_factorial import r8_factorial

  itmax = 1000
  r8_pi = 3.141592653589793
  tol = 5.0E-07

  if ( n < 0 ):

    b = 0.0

  elif ( n == 0 ):

    b = 1.0

  elif ( n == 1 ):

    b = -0.5

  elif ( n == 2 ):

    b = 1.0 / 6.0

  elif ( ( n % 2 ) == 1 ):

    b = 0.0

  else:

    sum2 = 0.0
    
    for i in range ( 1, itmax + 1 ):

      term = 1.0 / float ( i ) ** n
      sum2 = sum2 + term

      if ( abs ( term ) < tol or abs ( term ) < tol * abs ( sum2 ) ):
        break

    b = 2.0 * sum2 * r8_factorial ( n ) / ( 2.0 * r8_pi ) ** n

    if ( ( n % 4 ) == 0 ):
      b = -b

  return b