def apply_bevel(g_id, beam_dir, gap_dir, trans_dir, obj_ctr, obj_size, bevel): b = numpy.array(beam_dir) g = numpy.array(gap_dir) x = numpy.array(trans_dir) sz = numpy.array(obj_size) ctr = numpy.array(obj_ctr) e = int(bevel.edge) half_size = sz / 2 corner = ctr + half_size * [-x + g + b, x + g + b, x - g + b, -x - g + b][e] trans_offset = bevel.amountTrans * x * [1, -1, -1, 1][e] gap_offset = bevel.amountGap * g * [-1, -1, 1, 1][e] v = trans_offset - gap_offset vx2 = numpy.dot(trans_offset, trans_offset) vg2 = numpy.dot(gap_offset, gap_offset) v2 = numpy.dot(v, v) plane = x * [-1, 1, 1, -1][e] * numpy.sqrt(vg2 / v2) + g * [1, 1, -1, -1][e] * numpy.sqrt(vx2 / v2) pt = corner + trans_offset # object id, plane normal, point in plane - returns a new id in an array for some reason return radia.ObjCutMag(g_id, pt.tolist(), plane.tolist())[0]
def HybridUndCenPart(_gap, _gap_ofst, _nper, _air, _lp, _ch_p, _np, _np_tip, _mp, _cp, _lm, _ch_m_xz, _ch_m_yz, _ch_m_yz_r, _nm, _mm, _cm, _use_ex_sym=False): zer = [0, 0, 0] grp = rad.ObjCnt([]) y = _lp[1] / 4 initM = [0, -1, 0] pole = rad.ObjFullMag([_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p], [_lp[0] / 2, _lp[1] / 2, _lp[2]], zer, [_np[0], int(_np[1] / 2 + 0.5), _np[2]], grp, _mp, _cp) if (_ch_p > 0.): # Pole Tip poleTip = rad.ObjThckPgn( _lp[0] / 4, _lp[0] / 2, [[y - _lp[1] / 4, -_gap / 2 - _ch_p], [y - _lp[1] / 4, -_gap / 2], [y + _lp[1] / 4 - _ch_p, -_gap / 2], [y + _lp[1] / 4, -_gap / 2 - _ch_p]], zer) rad.ObjDivMag( poleTip, [_np_tip[0], int(_np_tip[1] / 2 + 0.5), _np_tip[2]]) rad.MatApl(poleTip, _mp) rad.ObjDrwAtr(poleTip, _cp) rad.ObjAddToCnt(grp, [poleTip]) y += _lp[1] / 4 + _air + _lm[1] / 2 for i in range(_nper): magnet = rad.ObjThckPgn( _lm[0] / 4, _lm[0] / 2, [[y + _lm[1] / 2 - _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst], [y + _lm[1] / 2, -_gap / 2 - _gap_ofst - _ch_m_yz], [y + _lm[1] / 2, -_gap / 2 - _gap_ofst - _lm[2] + _ch_m_yz], [ y + _lm[1] / 2 - _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst - _lm[2] ], [ y - _lm[1] / 2 + _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst - _lm[2] ], [y - _lm[1] / 2, -_gap / 2 - _gap_ofst - _lm[2] + _ch_m_yz], [y - _lm[1] / 2, -_gap / 2 - _gap_ofst - _ch_m_yz], [y - _lm[1] / 2 + _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst]], initM) # Cuting Magnet Corners magnet = rad.ObjCutMag( magnet, [_lm[0] / 2 - _ch_m_xz, 0, -_gap / 2 - _gap_ofst], [1, 0, 1])[0] magnet = rad.ObjCutMag( magnet, [_lm[0] / 2 - _ch_m_xz, 0, -_gap / 2 - _gap_ofst - _lm[2]], [1, 0, -1])[0] rad.ObjDivMag(magnet, _nm) rad.MatApl(magnet, _mm) rad.ObjDrwAtr(magnet, _cm) rad.ObjAddToCnt(grp, [magnet]) initM[1] *= -1 y += _lm[1] / 2 + _lp[1] / 2 + _air if (i < _nper - 1): pole = rad.ObjFullMag( [_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p], [_lp[0] / 2, _lp[1], _lp[2]], zer, _np, grp, _mp, _cp) if (_ch_p > 0.): # Pole Tip poleTip = rad.ObjThckPgn(_lp[0] / 4, _lp[0] / 2, [[y - _lp[1] / 2, -_gap / 2 - _ch_p], [y - _lp[1] / 2 + _ch_p, -_gap / 2], [y + _lp[1] / 2 - _ch_p, -_gap / 2], [y + _lp[1] / 2, -_gap / 2 - _ch_p]], zer) rad.ObjDivMag(poleTip, _np_tip) rad.MatApl(poleTip, _mp) rad.ObjDrwAtr(poleTip, _cp) rad.ObjAddToCnt(grp, [poleTip]) y += _lm[1] / 2 + _lp[1] / 2 + _air y -= _lp[1] / 4 pole = rad.ObjFullMag([_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p], [_lp[0] / 2, _lp[1] / 2, _lp[2]], zer, [_np[0], int(_np[1] / 2 + 0.5), _np[2]], grp, _mp, _cp) if (_ch_p > 0.): # Pole Tip poleTip = rad.ObjThckPgn( _lp[0] / 4, _lp[0] / 2, [[y - _lp[1] / 4, -_gap / 2 - _ch_p], [y - _lp[1] / 4 + _ch_p, -_gap / 2], [y + _lp[1] / 4, -_gap / 2], [y + _lp[1] / 4, -_gap / 2 - _ch_p]], zer) rad.ObjDivMag( poleTip, [_np_tip[0], int(_np_tip[1] / 2 + 0.5), _np_tip[2]]) rad.MatApl(poleTip, _mp) rad.ObjDrwAtr(poleTip, _cp) rad.ObjAddToCnt(grp, [poleTip]) # Symmetries if ( _use_ex_sym ): # Some "non-physical" mirroring (applicable for calculation of central field only) y += _lp[1] / 4 rad.TrfZerPerp(grp, [0, y, 0], [0, 1, 0]) # Mirror left-right rad.TrfZerPerp(grp, [0, 2 * y, 0], [0, 1, 0]) # #"Physical" symmetries (applicable also for calculation of total structure with terminations) # rad.TrfZerPerp(grp, zer, [0,1,0]) #Mirror left-right # #Mirror front-back # rad.TrfZerPerp(grp, zer, [1,0,0]) # #Mirror top-bottom # rad.TrfZerPara(grp, zer, [0,0,1]) return grp
cnt02 = rad.ObjCnt([mag00, mag]) mat = rad.MatLin([1.01, 1.2], [0, 0, 1.3]) #mat = rad.MatStd('NdFeB', 1.2) rad.MatApl(mag01, mat) print('Magn. Material index:', mat, ' appled to object:', mag01) mag00a = rad.ObjFullMag([10,0,40],[12,18,5],[0,0,1],[2,2,2],cnt02,mat,[0.5,0,0]) rad.ObjDrwOpenGL(cnt02) data_cnt = rad.ObjDrwVTK(cnt02) print(data_cnt) objAfterCut = rad.ObjCutMag(mag00a,[10,0,40],[1,1,1]) #,'Frame->Lab') print('Indexes of objects after cutting:', objAfterCut) #rad.ObjDrwOpenGL(objAfterCut[0]) print(rad.UtiDmp(mag01, 'asc')) print(rad.UtiDmp(mat, 'asc')) #print(rad.UtiDmp(107, 'asc')) magDpl = rad.ObjDpl(mag, 'FreeSym->False') print('Number of objects in the container:', rad.ObjCntSize(mag)) print('Number of objects in 2nd container:', rad.ObjCntSize(cnt02)) print('Number of objects in fake container:', rad.ObjCntSize(mag04)) print('Indices of elements in the container:', rad.ObjCntStuf(mag)) print('Indices of elements in the duplicated container:', rad.ObjCntStuf(magDpl))
def Yoke(): p0 = [58.527, 294.236] p1 = [0, 294.236] p2 = [0, 229] p3 = [35.75, 229] p4 = [35.75, 98] p5 = [17.5, 79.75] p6 = [17.5, 78.268] p9 = [78.268, 17.5] p10 = [79.75, 17.5] p11 = [98, 32.75] p12 = [229, 35.75] p13 = [229, 0] p14 = [294.236, 0] p15 = [294.236, 58.827] poly1 = [p0, p1, p2, p3, p4, p5, p6] poly4 = [p9, p10, p11, p12, p13, p14, p15] #Hyperbolic h = 54 #OC: checking reduced segmentation of the pole tip #nStep=21 nStep = 11 xmin = 23.2126 xmax = h / math.sqrt(2) xstep = (xmax - xmin) / (nStep - 1) ymin = xmin ymax = xmax ystep = xstep xlist = [] ylist = [] poly2 = [] poly3 = [] for i in range(nStep): x = xmin + i * xstep y = h * h / x / 2 poly2.append([x, y]) i += 1 for i in range(nStep): y = ymax - i * ystep x = h * h / y / 2 poly3.append([x, y]) i += 1 #OC del poly3[0] #OCTEST #print(poly1) #print(' ') #print(poly2) #print(' ') #print(poly3) #print(' ') #print(poly4) poly = poly1 + poly2 + poly3 + poly4 #2D geometry #Triangularization newlist = [] for i in range(len(poly)): newlist.append([1, 1]) i += 1 poly3D = rad.ObjMltExtTri(100, 200, poly, newlist, 'z', [0, 0, 0], 'ki->Numb,TriAngMin->30,TriAreaMax->1000') #chamfer cham_y = 6.7 + h cham_ang = 30 / 180 * math.pi pch = [cham_y / math.sqrt(2), cham_y / math.sqrt(2), 200] vch = [-1, -1, math.sqrt(2) * math.tan(cham_ang)] poly3D = rad.ObjCutMag(poly3D, pch, vch, "Frame->Lab")[0] rad.ObjDivMag(poly3D, [[1, 1], [1, 1], [5, 0.2]], 'pln', [[1, 0, 0], [0, 1, 0], [0, 0, 1]], "Frame->LabTot") rad.ObjDrwAtr(poly3D, [1, 1, 0], 0.001) return poly3D
def build(self): """Create a quadrupole with the given geometry.""" if self.solve_state < SolveState.SHAPES: self.define_shapes() rad.UtiDelAll() origin = [0, 0, 0] nx = [1, 0, 0] ny = [0, 1, 0] nz = [0, 0, 1] tip_mesh = round(self.min_mesh) pole_mesh = round(self.min_mesh * self.pole_mult) yoke_mesh = round(self.min_mesh * self.yoke_mult) length = self.length # Subdivide the pole tip cylindrically. The axis is where the edge of the tapered pole meets the Y-axis. points = rotate45(self.tip_points) x2, y2 = points[-2] # top right of pole x3, y3 = points[-3] # bottom right of pole m = (y2 - y3) / (x2 - x3) c = y2 - m * x2 pole_tip = rad.ObjThckPgn(length / 2, length, points, "z") # Slice off the chamfer (note the indexing at the end here - selects the pole not the cut-off piece) pole_tip = rad.ObjCutMag(pole_tip, [length - self.chamfer, 0, self.r], [1, 0, -1])[0] n_div = max(1, round(math.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) / pole_mesh)) # We have to specify the q values here (second element of each sublist in the subdivision argument) # otherwise weird things happen mesh = [[n_div, 4], [tip_mesh / 3, 1], [tip_mesh, 1]] div_opts = 'Frame->Lab;kxkykz->Size' # rad.ObjDivMag(pole_tip, [[tip_mesh, 1], [tip_mesh, 1], [tip_mesh, 3]], div_opts) rad.ObjDivMag(pole_tip, mesh, "cyl", [[[0, c, 0], nz], nx, 1], div_opts) rad.TrfOrnt(pole_tip, rad.TrfRot(origin, nz, -math.pi / 4)) pole = rad.ObjThckPgn(length / 2, length, rotate45(self.pole_points), "z") rad.ObjDivMag(pole, [pole_mesh, ] * 3, div_opts) rad.TrfOrnt(pole, rad.TrfRot(origin, nz, -math.pi / 4)) # Need to split yoke since Radia can't build concave blocks points = rotate45(self.yoke_points[:2] + self.yoke_points[-2:]) # yoke1 is the part that joins the pole to the yoke # Subdivide this cylindrically since the flux goes around a corner here # The axis is the second point (x1, y1) x1, y1 = points[1] yoke1 = rad.ObjThckPgn(length / 2, length, points, "z") cyl_div = [[[x1, y1, 0], nz], [self.width, self.width, 0], 1] # The first (kr) argument, corresponding to radial subdivision, # in rad.ObjDivMag cuts by number not size even though kxkykz->Size is specified. # So we have to fudge this. It seems to require a larger number to give the right number of subdivisions. n_div = max(1, round(2 * self.width / yoke_mesh)) rad.ObjDivMag(yoke1, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts) rad.TrfOrnt(yoke1, rad.TrfRot(origin, nz, -math.pi / 4)) # For the second part of the yoke, we use cylindrical subdivision again. But the axis is not on the corner; # instead we calculate the point where the two lines converge (xc, yc). points = self.yoke_points[1:3] + self.yoke_points[-3:-1] x0, y0 = points[0] x1, y1 = points[1] x2, y2 = points[2] x3, y3 = points[3] m1 = (y3 - y0) / (x3 - x0) m2 = (y2 - y1) / (x2 - x1) c1 = y0 - m1 * x0 c2 = y1 - m2 * x1 xc = (c2 - c1) / (m1 - m2) yc = m1 * xc + c1 yoke2 = rad.ObjThckPgn(length / 2, length, points, 'z') cyl_div = [[[xc, yc, 0], nz], [x3 - xc, y3 - yc, 0], 1] n_div = max(1, round(0.7 * n_div)) # this is a bit of a fudge rad.ObjDivMag(yoke2, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts) yoke3 = rad.ObjThckPgn(length / 2, length, self.yoke_points[2:6], "z") rad.ObjDivMag(yoke3, [yoke_mesh, ] * 3, div_opts) steel = rad.ObjCnt([pole_tip, pole, yoke1, yoke2, yoke3]) rad.ObjDrwAtr(steel, [0, 0, 1], 0.001) # blue steel rad.TrfOrnt(steel, rad.TrfRot(origin, ny, -math.pi / 2)) rad.ObjDrwOpenGL(steel) rad.TrfOrnt(steel, rad.TrfRot(origin, ny, math.pi / 2)) # rad.TrfMlt(steel, rad.TrfPlSym([0, 0, 0], [1, -1, 0]), 2) # reflect along X=Y line to create a quadrant rad.TrfZerPerp(steel, origin, [1, -1, 0]) rad.TrfZerPerp(steel, origin, nz) steel_material = rad.MatSatIsoFrm([2000, 2], [0.1, 2], [0.1, 2]) steel_material = rad.MatStd('Steel42') steel_material = rad.MatSatIsoFrm([959.703184, 1.41019852], [33.9916543, 0.5389669], [1.39161186, 0.64144324]) rad.MatApl(steel, steel_material) coil = rad.ObjRaceTrk(origin, [5, 5 + self.coil_width], [self.coil_x * 2 - self.r, length * 2], self.coil_height, 4, self.current_density) rad.TrfOrnt(coil, rad.TrfRot(origin, nx, -math.pi / 2)) rad.TrfOrnt(coil, rad.TrfTrsl([0, self.r + self.taper_height + self.coil_height / 2, 0])) rad.TrfOrnt(coil, rad.TrfRot(origin, nz, -math.pi / 4)) rad.ObjDrwAtr(coil, [1, 0, 0], 0.001) # red coil quad = rad.ObjCnt([steel, coil]) rad.TrfZerPara(quad, origin, nx) rad.TrfZerPara(quad, origin, ny) # rad.ObjDrwOpenGL(quad) self.radia_object = quad self.solve_state = SolveState.BUILT
def Geom(): #Pole faces rap = 0.5 ct = [0, 0, 0] z0 = gap / 2 y0 = width / 2 amax = hyp * asinh(y0 / z0) dz = z0 * (cosh(amax) - 1) aStep = amax / np na = int(amax * (1 + 2 / np) / aStep) + 1 qq = [[(z0 * sinh(ia * aStep / hyp)), (z0 * cosh(ia * aStep))] for ia in range(na)] hh = qq[np][1] + height * rap - dz qq[np + 1] = [qq[np][0], hh] qq[np + 2] = [0, hh] g1 = rad.ObjThckPgn(thick / 4, thick / 2, qq) rad.ObjDivMag(g1, n1) #Vertical segment on top of pole faces g2 = rad.ObjRecMag( [thick / 4, width / 4, gap / 2 + height * (1 / 2 + rap / 2)], [thick / 2, width / 2, height * (1 - rap)]) rad.ObjDivMag(g2, n2) #Corner gg = rad.ObjCnt([g1, g2]) gp = rad.ObjCutMag(gg, [thick / 2 - chamfer - gap / 2, 0, 0], [1, 0, -1])[0] g3 = rad.ObjRecMag([thick / 4, width / 4, gap / 2 + height + depth / 2], [thick / 2, width / 2, depth]) cy = [[[0, width / 2, gap / 2 + height], [1, 0, 0]], [0, 0, gap / 2 + height], 2 * depth / width] rad.ObjDivMag(g3, [nr3, np3, nx], 'cyl', cy) #Horizontal segment between the corners tan_n = tan(2 * pi / 2 / Nn) length = tan_n * (height + gap / 2) - width / 2 g4 = rad.ObjRecMag( [thick / 4, width / 2 + length / 2, gap / 2 + height + depth / 2], [thick / 2, length, depth]) rad.ObjDivMag(g4, n4) #The other corner posy = width / 2 + length posz = posy / tan_n g5 = rad.ObjThckPgn(thick / 4, thick / 2, [[posy, posz], [posy, posz + depth], [posy + depth * tan_n, posz + depth]]) cy = [[[0, posy, posz], [1, 0, 0]], [0, posy, posz + depth], 1] rad.ObjDivMag(g5, [nr5, np5, nx], 'cyl', cy) #Generation of the coil Rmax = Rmin - width / 2 + gap / 2 + offset - 2 coil1 = rad.ObjRaceTrk([0, 0, gap / 2 + height / 2 + offset / 2], [Rmin, Rmax], [thick, width - 2 * Rmin], height - offset, 3, CurDens) rad.ObjDrwAtr(coil1, coilcolor) hh = (height - offset) / 2 coil2 = rad.ObjRaceTrk([0, 0, gap / 2 + height - hh / 2], [Rmax, Rmax + hh * 0.8], [thick, width - 2 * Rmin], hh, 3, CurDens) rad.ObjDrwAtr(coil2, coilcolor) #Make container, set the colors and define symmetries g = rad.ObjCnt([gp, g3, g4, g5]) rad.ObjDrwAtr(g, ironcolor) gd = rad.ObjCnt([g]) rad.TrfZerPerp(gd, ct, [1, 0, 0]) rad.TrfZerPerp(gd, ct, [0, 1, 0]) t = rad.ObjCnt([gd, coil1, coil2]) rad.TrfZerPara(t, ct, [0, cos(pi / Nn), sin(pi / Nn)]) rad.TrfMlt(t, rad.TrfRot(ct, [1, 0, 0], 4 * pi / Nn), int(round(Nn / 2))) rad.MatApl(g, ironmat) rad.TrfOrnt(t, rad.TrfRot([0, 0, 0], [1, 0, 0], pi / Nn)) return t