コード例 #1
0
def BuildGeometry():

    #Current Densities in A/mm^2
    j1 = 128
    j2 = 256

    #Coil Presentation Parameters
    n1 = 3
    n2 = 6
    c2 = [1, 0, 0]
    c1 = [0, 1, 1]
    thcn = 0.001

    #Create 5 Coils
    Rt1 = rad.ObjRaceTrk([0., 0., 38.], [9.5, 24.5], [120., 0.], 36, n1, j1)
    rad.ObjDrwAtr(Rt1, c1, thcn)
    Rt3 = rad.ObjRaceTrk([0., 0., 76.], [10., 25.], [90., 0.], 24, n1, j1)
    rad.ObjDrwAtr(Rt3, c1, thcn)
    Rt2 = rad.ObjRaceTrk([0., 0., 38.], [24.5, 55.5], [120., 0.], 36, n1, j2)
    rad.ObjDrwAtr(Rt2, c2, thcn)
    Rt4 = rad.ObjRaceTrk([0., 0., 76.], [25., 55.], [90., 0.], 24, n1, j2)
    rad.ObjDrwAtr(Rt4, c2, thcn)
    Rt5 = rad.ObjRaceTrk([0., 0., 60.], [150., 166.3], [0., 0.], 39, n2, -j2)
    rad.ObjDrwAtr(Rt5, c2, thcn)

    Grp = rad.ObjCnt([Rt1, Rt2, Rt3, Rt4, Rt5])

    #Define Mirror Coils
    rad.TrfZerPara(Grp, [0, 0, 0], [0, 0, 1])

    return Grp
コード例 #2
0
ファイル: radia_tk.py プロジェクト: biaobin/sirepo
def _apply_symmetry(g_id, xform):
    plane = _split_comma_field(xform.symmetryPlane, 'float')
    point = _split_comma_field(xform.symmetryPoint, 'float')
    if xform.symmetryType == 'parallel':
        radia.TrfZerPara(g_id, point, plane)
    if xform.symmetryType == 'perpendicular':
        radia.TrfZerPerp(g_id, point, plane)
コード例 #3
0
ファイル: radia_examples.py プロジェクト: QJohn2017/sirepo
def wiggler_example():
    # current densities in A / mm^2
    j1 = 128
    j2 = 256

    # number of arc segments
    n1 = 3
    n2 = 6

    # create 5 racetrack coils above the mid-plane:
    #   lower inside, lower outside, upper inside, upper outside, and circular
    # radia.ObjRaceTrk[ctr:[x,y,z], rad:[r1,r2], lstr:[lx,ly], ht, nseg, j]
    rt1 = radia.ObjRaceTrk([0., 0., 38.], [9.5, 24.5], [120., 0.], 36, n1, j1)
    rt2 = radia.ObjRaceTrk([0., 0., 38.], [24.5, 55.5], [120., 0.], 36, n1, j2)
    rt3 = radia.ObjRaceTrk([0., 0., 76.], [10.0, 25.0], [90., 0.], 24, n1, j1)
    rt4 = radia.ObjRaceTrk([0., 0., 76.], [25.0, 55.0], [90., 0.], 24, n1, j2)
    rt5 = radia.ObjRaceTrk([0., 0., 60.], [150.0, 166.3], [0., 0.], 39, n2, -j2)

    c1 = [0.0,1.0,1.0] # blue/green
    c2 = [1.0,0.4,0.0] # orange-red
    thcn = 0.001
    radia.ObjDrwAtr(rt1, c1, thcn)
    radia.ObjDrwAtr(rt2, c2, thcn)
    radia.ObjDrwAtr(rt3, c1, thcn)
    radia.ObjDrwAtr(rt4, c2, thcn)
    radia.ObjDrwAtr(rt5, c2, thcn)

    # assemble into a group
    geom = radia.ObjCnt([rt1, rt2, rt3, rt4, rt5])

    # and reflect in the (x,y) plane [plane through (0,0,0) with normal (0,0,1)]
    radia.TrfZerPara(geom, [0, 0, 0], [0, 0, 1])

    return geom
コード例 #4
0
ファイル: radia_util.py プロジェクト: mkeilman/sirepo
def _apply_symmetry(g_id, xform):
    xform = PKDict(xform)
    plane = sirepo.util.split_comma_delimited_string(xform.symmetryPlane, float)
    point = sirepo.util.split_comma_delimited_string(xform.symmetryPoint, float)
    if xform.symmetryType == 'parallel':
        radia.TrfZerPara(g_id, point, plane)
    if xform.symmetryType == 'perpendicular':
        radia.TrfZerPerp(g_id, point, plane)
コード例 #5
0
def Und(lp, mp, np, cp, lm, mm, nm, cm, gap, gapOffset, numPer):

    zer = [0, 0, 0]
    Grp = rad.ObjCnt([])

    #Principal Poles and Magnets
    #y = lp[1]/4;
    y = 0.25 * lp[1]

    #Pole = rad.ObjFullMag([lp[0]/4,y,-lp[2]/2-gap/2], [lp[0]/2,lp[1]/2,lp[2]], zer, np, Grp, mp, cp)
    Pole = rad.ObjFullMag([0.25 * lp[0], y, -0.5 * (lp[2] + gap)],
                          [0.5 * lp[0], 0.5 * lp[1], lp[2]], zer, np, Grp, mp,
                          cp)
    #y += lp[1]/4;
    y += 0.25 * lp[1]

    mDir = -1
    for i in range(0, numPer):
        initM = [0, mDir, 0]
        mDir *= -1
        #y += lm[1]/2
        y += 0.5 * lm[1]

        #Magnet = rad.ObjFullMag([lm[0]/4,y,-lm[2]/2-gap/2-gapOffset], [lm[0]/2,lm[1],lm[2]], initM, nm, Grp, mm, cm)
        Magnet = rad.ObjFullMag(
            [0.25 * lm[0], y, -0.5 * (lm[2] + gap) - gapOffset],
            [0.5 * lm[0], lm[1], lm[2]], initM, nm, Grp, mm, cm)
        #y += (lm[1] + lp[1])/2
        y += 0.5 * (lm[1] + lp[1])

        #Pole = rad.ObjFullMag([lp[0]/4,y,-lp[2]/2-gap/2], [lp[0]/2,lp[1],lp[2]], zer, np, Grp, mp, cp)
        Pole = rad.ObjFullMag([0.25 * lp[0], y, -0.5 * (lp[2] + gap)],
                              [0.5 * lp[0], lp[1], lp[2]], zer, np, Grp, mp,
                              cp)
        #y += lp[1]/2
        y += 0.5 * lp[1]

    initM = [0, mDir, 0]
    #y += lm[1]/4;
    y += 0.25 * lm[1]

    #Magnet = rad.ObjFullMag([lm[0]/4,y,-lm[2]/2-gap/2-gapOffset], [lm[0]/2,lm[1]/2,lm[2]], initM, nm, Grp, mm, cm)
    Magnet = rad.ObjFullMag(
        [0.25 * lm[0], y, -0.5 * (lm[2] + gap) - gapOffset],
        [0.5 * lm[0], 0.5 * lm[1], lm[2]], initM, nm, Grp, mm, cm)

    #Mirrors
    rad.TrfZerPerp(Grp, [0, 0, 0], [1, 0, 0])
    rad.TrfZerPara(Grp, zer, [0, 0, 1])
    rad.TrfZerPerp(Grp, zer, [0, 1, 0])

    return Grp, Pole, Magnet
コード例 #6
0
def Und(lp, mp, np, cp, lm, mm, nm, cm, gap, gapOffset, numPer):

    zer = [0, 0, 0]
    Grp = rad.ObjCnt([])

    #Principal Poles and Magnets
    y = lp[1] / 4
    Pole = rad.ObjFullMag([lp[0] / 4, y, -lp[2] / 2 - gap / 2],
                          [lp[0] / 2, lp[1] / 2, lp[2]], zer, np, Grp, mp, cp)
    y += lp[1] / 4

    mDir = -1
    for i in range(0, numPer):
        initM = [0, mDir, 0]
        mDir *= -1
        y += lm[1] / 2
        Magnet = rad.ObjFullMag(
            [lm[0] / 4, y, -lm[2] / 2 - gap / 2 - gapOffset],
            [lm[0] / 2, lm[1], lm[2]], initM, nm, Grp, mm, cm)
        y += (lm[1] + lp[1]) / 2
        Pole = rad.ObjFullMag([lp[0] / 4, y, -lp[2] / 2 - gap / 2],
                              [lp[0] / 2, lp[1], lp[2]], zer, np, Grp, mp, cp)
        y += lp[1] / 2

    initM = [0, mDir, 0]
    y += lm[1] / 4
    Magnet = rad.ObjFullMag([lm[0] / 4, y, -lm[2] / 2 - gap / 2 - gapOffset],
                            [lm[0] / 2, lm[1] / 2, lm[2]], initM, nm, Grp, mm,
                            cm)

    #Mirrors
    rad.TrfZerPerp(Grp, [0, 0, 0], [1, 0, 0])
    rad.TrfZerPara(Grp, zer, [0, 0, 1])
    rad.TrfZerPerp(Grp, zer, [0, 1, 0])

    return Grp, Pole, Magnet
コード例 #7
0
def HybridUndCenPart(_gap,
                     _gap_ofst,
                     _nper,
                     _air,
                     _lp,
                     _ch_p,
                     _np,
                     _np_tip,
                     _mp,
                     _cp,
                     _lm,
                     _ch_m_xz,
                     _ch_m_yz,
                     _ch_m_yz_r,
                     _nm,
                     _mm,
                     _cm,
                     _use_ex_sym=False):

    zer = [0, 0, 0]
    grp = rad.ObjCnt([])

    y = _lp[1] / 4
    initM = [0, -1, 0]

    pole = rad.ObjFullMag([_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p],
                          [_lp[0] / 2, _lp[1] / 2, _lp[2]], zer,
                          [_np[0], int(_np[1] / 2 + 0.5), _np[2]], grp, _mp,
                          _cp)

    if (_ch_p > 0.):  #Pole Tip
        poleTip = rad.ObjThckPgn(
            _lp[0] / 4, _lp[0] / 2,
            [[y - _lp[1] / 4, -_gap / 2 - _ch_p], [y - _lp[1] / 4, -_gap / 2],
             [y + _lp[1] / 4 - _ch_p, -_gap / 2],
             [y + _lp[1] / 4, -_gap / 2 - _ch_p]], zer)
        rad.ObjDivMag(
            poleTip,
            [_np_tip[0], int(_np_tip[1] / 2 + 0.5), _np_tip[2]])
        rad.MatApl(poleTip, mp)
        rad.ObjDrwAtr(poleTip, cp)
        rad.ObjAddToCnt(grp, [poleTip])

    y += _lp[1] / 4 + _air + _lm[1] / 2

    for i in range(_nper):
        magnet = rad.ObjThckPgn(
            _lm[0] / 4, _lm[0] / 2,
            [[y + _lm[1] / 2 - _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst],
             [y + _lm[1] / 2, -_gap / 2 - _gap_ofst - _ch_m_yz],
             [y + _lm[1] / 2, -_gap / 2 - _gap_ofst - _lm[2] + _ch_m_yz],
             [
                 y + _lm[1] / 2 - _ch_m_yz_r * _ch_m_yz,
                 -_gap / 2 - _gap_ofst - _lm[2]
             ],
             [
                 y - _lm[1] / 2 + _ch_m_yz_r * _ch_m_yz,
                 -_gap / 2 - _gap_ofst - _lm[2]
             ], [y - _lm[1] / 2, -_gap / 2 - _gap_ofst - _lm[2] + _ch_m_yz],
             [y - _lm[1] / 2, -_gap / 2 - _gap_ofst - _ch_m_yz],
             [y - _lm[1] / 2 + _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst]],
            initM)
        #Cuting Magnet Corners
        magnet = rad.ObjCutMag(
            magnet, [_lm[0] / 2 - _ch_m_xz, 0, -_gap / 2 - _gap_ofst],
            [1, 0, 1])[0]
        magnet = rad.ObjCutMag(
            magnet, [_lm[0] / 2 - _ch_m_xz, 0, -_gap / 2 - _gap_ofst - _lm[2]],
            [1, 0, -1])[0]

        rad.ObjDivMag(magnet, _nm)
        rad.MatApl(magnet, _mm)
        rad.ObjDrwAtr(magnet, _cm)
        rad.ObjAddToCnt(grp, [magnet])

        initM[1] *= -1
        y += _lm[1] / 2 + _lp[1] / 2 + _air

        if (i < _nper - 1):
            pole = rad.ObjFullMag(
                [_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p],
                [_lp[0] / 2, _lp[1], _lp[2]], zer, _np, grp, _mp, _cp)

            if (_ch_p > 0.):  #Pole Tip
                poleTip = rad.ObjThckPgn(_lp[0] / 4, _lp[0] / 2,
                                         [[y - _lp[1] / 2, -_gap / 2 - _ch_p],
                                          [y - _lp[1] / 2 + _ch_p, -_gap / 2],
                                          [y + _lp[1] / 2 - _ch_p, -_gap / 2],
                                          [y + _lp[1] / 2, -_gap / 2 - _ch_p]],
                                         zer)
                rad.ObjDivMag(poleTip, _np_tip)
                rad.MatApl(poleTip, mp)
                rad.ObjDrwAtr(poleTip, cp)
                rad.ObjAddToCnt(grp, [poleTip])

            y += _lm[1] / 2 + _lp[1] / 2 + _air

    y -= _lp[1] / 4
    pole = rad.ObjFullMag([_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p],
                          [_lp[0] / 2, _lp[1] / 2, _lp[2]], zer,
                          [_np[0], int(_np[1] / 2 + 0.5), _np[2]], grp, _mp,
                          _cp)
    if (_ch_p > 0.):  #Pole Tip
        poleTip = rad.ObjThckPgn(
            _lp[0] / 4, _lp[0] / 2,
            [[y - _lp[1] / 4, -_gap / 2 - _ch_p],
             [y - _lp[1] / 4 + _ch_p, -_gap / 2], [y + _lp[1] / 4, -_gap / 2],
             [y + _lp[1] / 4, -_gap / 2 - _ch_p]], zer)
        rad.ObjDivMag(
            poleTip,
            [_np_tip[0], int(_np_tip[1] / 2 + 0.5), _np_tip[2]])
        rad.MatApl(poleTip, mp)
        rad.ObjDrwAtr(poleTip, cp)
        rad.ObjAddToCnt(grp, [poleTip])

    #Symmetries
    if (
            _use_ex_sym
    ):  #Some "non-physical" mirroring (applicable for calculation of central field only)
        y += _lp[1] / 4
        rad.TrfZerPerp(grp, [0, y, 0], [0, 1, 0])  #Mirror left-right
        rad.TrfZerPerp(grp, [0, 2 * y, 0], [0, 1, 0])

    #"Physical" symmetries (applicable also for calculation of total structure with terminations)
    rad.TrfZerPerp(grp, zer, [0, 1, 0])  #Mirror left-right
    #Mirror front-back
    rad.TrfZerPerp(grp, zer, [1, 0, 0])
    #Mirror top-bottom
    rad.TrfZerPara(grp, zer, [0, 0, 1])

    return grp
コード例 #8
0
ファイル: radia_examples.py プロジェクト: QJohn2017/sirepo
    def geom(circ):

        eps = 0
        ironcolor = [0, 0.5, 1]
        coilcolor = [1, 0, 0]
        ironmat = radia.MatSatIsoFrm([20000, 2], [0.1, 2], [0.1, 2])

        # Pole faces
        lx1 = thick / 2
        ly1 = width
        lz1 = 20
        l1 = [lx1, ly1, lz1]

        k1 = [[thick / 4. - chamfer / 2., 0, gap / 2.],
              [thick / 2. - chamfer, ly1 - 2. * chamfer]]
        k2 = [[thick / 4., 0., gap / 2. + chamfer], [thick / 2., ly1]]
        k3 = [[thick / 4., 0., gap / 2. + lz1], [thick / 2, ly1]]
        g1 = radia.ObjMltExtRtg([k1, k2, k3])
        radia.ObjDivMag(g1, n1)
        radia.ObjDrwAtr(g1, ironcolor)

        # Vertical segment on top of pole faces
        lx2 = thick / 2
        ly2 = ly1
        lz2 = 30
        l2 = [lx2, ly2, lz2]
        p2 = [thick / 4, 0, lz1 + gap / 2 + lz2 / 2 + 1 * eps]
        g2 = radia.ObjRecMag(p2, l2)
        radia.ObjDivMag(g2, n2)
        radia.ObjDrwAtr(g2, ironcolor)

        # Corner
        lx3 = thick / 2
        ly3 = ly2
        lz3 = ly2 * 1.25
        l3 = [lx3, ly3, lz3]
        p3 = [thick / 4, 0, lz1 + gap / 2 + lz2 + lz3 / 2 + 2 * eps]
        g3 = radia.ObjRecMag(p3, l3)

        typ = [
            [p3[0], p3[1] + ly3 / 2, p3[2] - lz3 / 2],
            [1, 0, 0],
            [p3[0], p3[1] - ly3 / 2, p3[2] - lz3 / 2],
            lz3 / ly3
        ]

        if circ == 1:
            radia.ObjDivMag(g3, [nbr, nbp, n3[1]], 'cyl', typ)
        else:
            radia.ObjDivMag(g3, n3)
        radia.ObjDrwAtr(g3, ironcolor)

        # Horizontal segment between the corners
        lx4 = thick / 2
        ly4 = 80
        lz4 = lz3
        l4 = [lx4, ly4, lz4]
        p4 = [thick / 4, ly3 / 2 + eps + ly4 / 2, p3[2]]
        g4 = radia.ObjRecMag(p4, l4)
        radia.ObjDivMag(g4, n4)
        radia.ObjDrwAtr(g4, ironcolor)

        # The other corner
        lx5 = thick / 2
        ly5 = lz4 * 1.25
        lz5 = lz4
        l5 = [lx5, ly5, lz5]
        p5 = [thick / 4, p4[1] + eps + (ly4 + ly5) / 2, p4[2]]
        g5 = radia.ObjRecMag(p5, l5)

        typ = [
            [p5[0], p5[1] - ly5 / 2, p5[2] - lz5 / 2],
            [1, 0, 0],
            [p5[0], p5[1] + ly5 / 2, p5[2] - lz5 / 2],
            lz5 / ly5
        ]

        if circ == 1:
            radia.ObjDivMag(g5, [nbr, nbp, n5[0]], 'cyl', typ)
        else:
            radia.ObjDivMag(g5, n5)
        radia.ObjDrwAtr(g5, ironcolor)

        # Vertical segment inside the coil
        lx6 = thick / 2
        ly6 = ly5
        lz6 = gap / 2 + lz1 + lz2
        l6 = [lx6, ly6, lz6]
        p6 = [thick / 4, p5[1], p5[2] - (lz6 + lz5) / 2 - eps]
        g6 = radia.ObjRecMag(p6, l6)
        radia.ObjDivMag(g6, n6)
        radia.ObjDrwAtr(g6, ironcolor)

        # Generation of the coil
        r_min = 5
        r_max = 40
        h = 2 * lz6 - 5

        cur_dens = current / h / (r_max - r_min)
        pc = [0, p6[1], 0]
        coil = radia.ObjRaceTrk(pc, [r_min, r_max], [thick, ly6], h, 3, cur_dens)
        radia.ObjDrwAtr(coil, coilcolor)

        # Make container and set the colors
        g = radia.ObjCnt([g1, g2, g3, g4, g5, g6])
        radia.ObjDrwAtr(g, ironcolor)
        radia.MatApl(g, ironmat)
        t = radia.ObjCnt([g, coil])

        # Define the symmetries
        radia.TrfZerPerp(g, [0, 0, 0], [1, 0, 0])
        radia.TrfZerPara(g, [0, 0, 0], [0, 0, 1])
        return t
コード例 #9
0
ファイル: radia_examples.py プロジェクト: QJohn2017/sirepo
    def undulator(
            pole_lengths, pole_props, pole_segs, block_lengths, block_props,
            block_segs, gap_height, gap_offset, num_periods
    ):
        """
        create hybrid undulator magnet
        arguments:
          pole_lengths = [lpx, lpy, lpz] = dimensions of the iron poles (mm)
          pole_props = magnetic properties of the iron poles (M-H curve)
          pole_segs = segmentation of the iron poles
          block_lengths = [lmx, lmy, lmz] = dimensions of the magnet blocks (mm)
          block_props = magnetic properties of the magnet blocks (remanent magnetization)
          block_segs = segmentation of the magnet blocks
          gap_height = undulator gap (mm)
          gap_offset = vertical offset of the magnet blocks w/rt the poles (mm)
          numPer = number of full periods of the undulator magnetic field
        return: Radia representations of
          undulator group, poles, permanent magnets
        """
        zero = [0, 0, 0]

        # colors
        c_pole = [1, 0, 1]
        c_block = [0, 1, 1]

        # full magnet will be assembled into this Radia group
        grp = radia.ObjCnt([])

        # principal poles and magnet blocks in octant(+,+,–)
        # -- half pole
        y = pole_lengths[1] / 4
        pole = radia.ObjFullMag(
            [pole_lengths[0] / 4, y, -pole_lengths[2] / 2 - gap_height / 2],
            [pole_lengths[0] / 2, pole_lengths[1] / 2, pole_lengths[2]],
            zero, pole_segs, grp, pole_props, c_pole
        )
        y += pole_lengths[1] / 4

        # -- magnet and pole pairs
        m_dir = -1
        for i in range(num_periods):
            init_m = [0, m_dir, 0]
            m_dir *= -1
            y += block_lengths[1] / 2
            magnet = radia.ObjFullMag(
                [
                    block_lengths[0] / 4,
                    y,
                    -block_lengths[2] / 2 - gap_height / 2 - gap_offset
                ],
                [
                    block_lengths[0] / 2, block_lengths[1], block_lengths[2]
                ],
                init_m, block_segs, grp, block_props, c_block
            )
            y += (block_lengths[1] + pole_lengths[1]) / 2
            pole = radia.ObjFullMag(
                [pole_lengths[0] / 4, y, -pole_lengths[2] / 2 - gap_height / 2],
                [pole_lengths[0] / 2, pole_lengths[1], pole_lengths[2]],
                zero, pole_segs, grp, pole_props, c_pole
            )
            y += pole_lengths[1] / 2

        # -- end magnet block
        init_m = [0, m_dir, 0]
        y += block_lengths[1] / 4
        magnet = radia.ObjFullMag(
            [
                block_lengths[0] / 4,
                y,
                -block_lengths[2] / 2 - gap_height / 2 - gap_offset
            ],
            [
                block_lengths[0] / 2, block_lengths[1] / 2, block_lengths[2]
            ],
            init_m, block_segs, grp, block_props, c_block)

        # use mirror symmetry to define the full undulator
        radia.TrfZerPerp(grp, zero, [1, 0, 0])  # reflect in the (y,z) plane
        radia.TrfZerPara(grp, zero, [0, 0, 1])  # reflect in the (x,y) plane
        radia.TrfZerPerp(grp, zero, [0, 1, 0])  # reflect in the (z,x) plane

        return grp, pole, magnet
コード例 #10
0
    ByVsZ = rad.Fld(g, 'by', Points)

    return ByVsX, [xMin, xMax, nx], X, ByVsZ, [zMin, zMax, nz], Z


#main
mat = Material()
yoke = Yoke()
#rad.ObjDrwOpenGL(yoke)
excitation = 4832.5
rad.MatApl(yoke, mat)
coil = Coil(excitation)

#rad.ObjDrwOpenGL(coil)

rad.TrfZerPara(yoke, [0, 0, 0], [1, 0, 0])
rad.TrfZerPara(yoke, [0, 0, 0], [0, 1, 0])

rad.TrfZerPerp(yoke, [0, 0, 0], [0, 0, 1])

rad.TrfZerPara(coil, [0, 0, 0], [1, 0, 0])
rad.TrfZerPara(coil, [0, 0, 0], [0, 1, 0])
full = rad.ObjCnt([yoke, coil])

#rad.ObjDrwOpenGL(full)

t0 = time.time()
res = rad.Solve(full, 0.0001, 10000)
# No workers should exit rad.Solve
assert mpi4py.MPI.COMM_WORLD.Get_rank() == 0
コード例 #11
0
    def build(self):
        """Create a quadrupole with the given geometry."""
        if self.solve_state < SolveState.SHAPES:
            self.define_shapes()

        rad.UtiDelAll()
        origin = [0, 0, 0]
        nx = [1, 0, 0]
        ny = [0, 1, 0]
        nz = [0, 0, 1]

        tip_mesh = round(self.min_mesh)
        pole_mesh = round(self.min_mesh * self.pole_mult)
        yoke_mesh = round(self.min_mesh * self.yoke_mult)

        length = self.length

        # Subdivide the pole tip cylindrically. The axis is where the edge of the tapered pole meets the Y-axis.
        points = rotate45(self.tip_points)
        x2, y2 = points[-2]  # top right of pole
        x3, y3 = points[-3]  # bottom right of pole
        m = (y2 - y3) / (x2 - x3)
        c = y2 - m * x2
        pole_tip = rad.ObjThckPgn(length / 2, length, points, "z")
        # Slice off the chamfer (note the indexing at the end here - selects the pole not the cut-off piece)
        pole_tip = rad.ObjCutMag(pole_tip, [length - self.chamfer, 0, self.r], [1, 0, -1])[0]
        n_div = max(1, round(math.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) / pole_mesh))
        # We have to specify the q values here (second element of each sublist in the subdivision argument)
        # otherwise weird things happen
        mesh = [[n_div, 4], [tip_mesh / 3, 1], [tip_mesh, 1]]
        div_opts = 'Frame->Lab;kxkykz->Size'
        # rad.ObjDivMag(pole_tip, [[tip_mesh, 1], [tip_mesh, 1], [tip_mesh, 3]], div_opts)
        rad.ObjDivMag(pole_tip, mesh, "cyl", [[[0, c, 0], nz], nx, 1], div_opts)
        rad.TrfOrnt(pole_tip, rad.TrfRot(origin, nz, -math.pi / 4))

        pole = rad.ObjThckPgn(length / 2, length, rotate45(self.pole_points), "z")
        rad.ObjDivMag(pole, [pole_mesh, ] * 3, div_opts)
        rad.TrfOrnt(pole, rad.TrfRot(origin, nz, -math.pi / 4))

        # Need to split yoke since Radia can't build concave blocks
        points = rotate45(self.yoke_points[:2] + self.yoke_points[-2:])
        # yoke1 is the part that joins the pole to the yoke
        # Subdivide this cylindrically since the flux goes around a corner here
        # The axis is the second point (x1, y1)
        x1, y1 = points[1]
        yoke1 = rad.ObjThckPgn(length / 2, length, points, "z")
        cyl_div = [[[x1, y1, 0], nz], [self.width, self.width, 0], 1]
        # The first (kr) argument, corresponding to radial subdivision,
        # in rad.ObjDivMag cuts by number not size even though kxkykz->Size is specified.
        # So we have to fudge this. It seems to require a larger number to give the right number of subdivisions.
        n_div = max(1, round(2 * self.width / yoke_mesh))
        rad.ObjDivMag(yoke1, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts)
        rad.TrfOrnt(yoke1, rad.TrfRot(origin, nz, -math.pi / 4))

        # For the second part of the yoke, we use cylindrical subdivision again. But the axis is not on the corner;
        # instead we calculate the point where the two lines converge (xc, yc).
        points = self.yoke_points[1:3] + self.yoke_points[-3:-1]
        x0, y0 = points[0]
        x1, y1 = points[1]
        x2, y2 = points[2]
        x3, y3 = points[3]
        m1 = (y3 - y0) / (x3 - x0)
        m2 = (y2 - y1) / (x2 - x1)
        c1 = y0 - m1 * x0
        c2 = y1 - m2 * x1
        xc = (c2 - c1) / (m1 - m2)
        yc = m1 * xc + c1
        yoke2 = rad.ObjThckPgn(length / 2, length, points, 'z')
        cyl_div = [[[xc, yc, 0], nz], [x3 - xc, y3 - yc, 0], 1]
        n_div = max(1, round(0.7 * n_div))  # this is a bit of a fudge
        rad.ObjDivMag(yoke2, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts)

        yoke3 = rad.ObjThckPgn(length / 2, length, self.yoke_points[2:6], "z")
        rad.ObjDivMag(yoke3, [yoke_mesh, ] * 3, div_opts)

        steel = rad.ObjCnt([pole_tip, pole, yoke1, yoke2, yoke3])
        rad.ObjDrwAtr(steel, [0, 0, 1], 0.001)  # blue steel
        rad.TrfOrnt(steel, rad.TrfRot(origin, ny, -math.pi / 2))
        rad.ObjDrwOpenGL(steel)
        rad.TrfOrnt(steel, rad.TrfRot(origin, ny, math.pi / 2))
        # rad.TrfMlt(steel, rad.TrfPlSym([0, 0, 0], [1, -1, 0]), 2)  # reflect along X=Y line to create a quadrant
        rad.TrfZerPerp(steel, origin, [1, -1, 0])
        rad.TrfZerPerp(steel, origin, nz)
        steel_material = rad.MatSatIsoFrm([2000, 2], [0.1, 2], [0.1, 2])
        steel_material = rad.MatStd('Steel42')
        steel_material = rad.MatSatIsoFrm([959.703184, 1.41019852], [33.9916543, 0.5389669], [1.39161186, 0.64144324])
        rad.MatApl(steel, steel_material)

        coil = rad.ObjRaceTrk(origin, [5, 5 + self.coil_width],
                              [self.coil_x * 2 - self.r, length * 2], self.coil_height, 4, self.current_density)
        rad.TrfOrnt(coil, rad.TrfRot(origin, nx, -math.pi / 2))
        rad.TrfOrnt(coil, rad.TrfTrsl([0, self.r + self.taper_height + self.coil_height / 2, 0]))
        rad.TrfOrnt(coil, rad.TrfRot(origin, nz, -math.pi / 4))
        rad.ObjDrwAtr(coil, [1, 0, 0], 0.001)  # red coil
        quad = rad.ObjCnt([steel, coil])

        rad.TrfZerPara(quad, origin, nx)
        rad.TrfZerPara(quad, origin, ny)

        # rad.ObjDrwOpenGL(quad)
        self.radia_object = quad
        self.solve_state = SolveState.BUILT
コード例 #12
0
ファイル: sim_functions.py プロジェクト: radiasoft/rsopt
def hybrid_undulator(lpx, lpy, lpz, pole_properties, pole_segmentation, pole_color,
                     lmx, lmz, magnet_properties, magnet_segmentation, magnet_color,
                     gap, offset, period, period_number):
    """
    create hybrid undulator magnet
    arguments:
      pole_dimensions = [lpx, lpy, lpz] = dimensions of the iron poles / mm
      pole_properties = magnetic properties of the iron poles (M-H curve)
      pole_separation = segmentation of the iron poles
      pole_color = [r,g,b] = color for the iron poles
      magnet_dimensions = [lmx, lmy, lmz] = dimensions of the magnet blocks / mm
      magnet_properties = magnetic properties of the magnet blocks (remanent magnetization)
      magnet_segmentation = segmentation of the magnet blocks
      magnet_color = [r,g,b] = color for the magnet blocks
      gap = undulator gap / mm
      offset = vertical offset / mm of the magnet blocks w/rt the poles
      period = length of one undulator period / mm
      period_number = number of full periods of the undulator magnetic field
    return: Radia representations of
      undulator group, poles, permanent magnets
    """
    pole_dimensions = [lpx, lpy, lpz]
    lmy = period / 2. - pole_dimensions[1]
    magnet_dimensions = [lmx, lmy, lmz]
    zer = [0, 0, 0]
    # full magnet will be assembled into this Radia group
    grp = rad.ObjCnt([])
    # principal poles and magnet blocks in octant(+,+,–)
    # -- half pole
    y = pole_dimensions[1] / 4
    pole = rad.ObjFullMag([pole_dimensions[0] / 4, y, -pole_dimensions[2] / 2 - gap / 2],
                          [pole_dimensions[0] / 2, pole_dimensions[1] / 2, pole_dimensions[2]],
                          zer, pole_segmentation, grp, pole_properties, pole_color)
    y += pole_dimensions[1] / 4
    # -- magnet and pole pairs
    magnetization_dir = -1
    for i in range(0, period_number):
        init_magnetization = [0, magnetization_dir, 0]
        magnetization_dir *= -1
        y += magnet_dimensions[1] / 2
        magnet = rad.ObjFullMag([magnet_dimensions[0] / 4, y, -magnet_dimensions[2] / 2 - gap / 2 - offset],
                                [magnet_dimensions[0] / 2, magnet_dimensions[1], magnet_dimensions[2]],
                                init_magnetization, magnet_segmentation, grp, magnet_properties, magnet_color)
        y += (magnet_dimensions[1] + pole_dimensions[1]) / 2
        pole = rad.ObjFullMag([pole_dimensions[0] / 4, y, -pole_dimensions[2] / 2 - gap / 2],
                              [pole_dimensions[0] / 2, pole_dimensions[1], pole_dimensions[2]],
                              zer, pole_segmentation, grp, pole_properties, pole_color)
        y += pole_dimensions[1] / 2
    # -- end magnet block
    init_magnetization = [0, magnetization_dir, 0]
    y += magnet_dimensions[1] / 4
    magnet = rad.ObjFullMag([magnet_dimensions[0] / 4, y, -magnet_dimensions[2] / 2 - gap / 2 - offset],
                            [magnet_dimensions[0] / 2, magnet_dimensions[1] / 2, magnet_dimensions[2]],
                            init_magnetization, magnet_segmentation, grp, magnet_properties, magnet_color)
    # use mirror symmetry to define the full undulator
    rad.TrfZerPerp(grp, zer, [1, 0, 0])  # reflect in the (y,z) plane
    rad.TrfZerPara(grp, zer, [0, 0, 1])  # reflect in the (x,y) plane
    rad.TrfZerPerp(grp, zer, [0, 1, 0])  # reflect in the (z,x) plane


    return grp, pole, magnet
コード例 #13
0
def Geom():

    #Pole faces
    rap = 0.5
    ct = [0, 0, 0]
    z0 = gap / 2
    y0 = width / 2
    amax = hyp * asinh(y0 / z0)
    dz = z0 * (cosh(amax) - 1)
    aStep = amax / np
    na = int(amax * (1 + 2 / np) / aStep) + 1
    qq = [[(z0 * sinh(ia * aStep / hyp)), (z0 * cosh(ia * aStep))]
          for ia in range(na)]
    hh = qq[np][1] + height * rap - dz
    qq[np + 1] = [qq[np][0], hh]
    qq[np + 2] = [0, hh]
    g1 = rad.ObjThckPgn(thick / 4, thick / 2, qq)
    rad.ObjDivMag(g1, n1)

    #Vertical segment on top of pole faces
    g2 = rad.ObjRecMag(
        [thick / 4, width / 4, gap / 2 + height * (1 / 2 + rap / 2)],
        [thick / 2, width / 2, height * (1 - rap)])
    rad.ObjDivMag(g2, n2)

    #Corner
    gg = rad.ObjCnt([g1, g2])
    gp = rad.ObjCutMag(gg, [thick / 2 - chamfer - gap / 2, 0, 0],
                       [1, 0, -1])[0]
    g3 = rad.ObjRecMag([thick / 4, width / 4, gap / 2 + height + depth / 2],
                       [thick / 2, width / 2, depth])
    cy = [[[0, width / 2, gap / 2 + height], [1, 0, 0]],
          [0, 0, gap / 2 + height], 2 * depth / width]
    rad.ObjDivMag(g3, [nr3, np3, nx], 'cyl', cy)

    #Horizontal segment between the corners
    tan_n = tan(2 * pi / 2 / Nn)
    length = tan_n * (height + gap / 2) - width / 2
    g4 = rad.ObjRecMag(
        [thick / 4, width / 2 + length / 2, gap / 2 + height + depth / 2],
        [thick / 2, length, depth])
    rad.ObjDivMag(g4, n4)

    #The other corner
    posy = width / 2 + length
    posz = posy / tan_n
    g5 = rad.ObjThckPgn(thick / 4, thick / 2,
                        [[posy, posz], [posy, posz + depth],
                         [posy + depth * tan_n, posz + depth]])
    cy = [[[0, posy, posz], [1, 0, 0]], [0, posy, posz + depth], 1]
    rad.ObjDivMag(g5, [nr5, np5, nx], 'cyl', cy)

    #Generation of the coil
    Rmax = Rmin - width / 2 + gap / 2 + offset - 2
    coil1 = rad.ObjRaceTrk([0, 0, gap / 2 + height / 2 + offset / 2],
                           [Rmin, Rmax], [thick, width - 2 * Rmin],
                           height - offset, 3, CurDens)
    rad.ObjDrwAtr(coil1, coilcolor)
    hh = (height - offset) / 2
    coil2 = rad.ObjRaceTrk([0, 0, gap / 2 + height - hh / 2],
                           [Rmax, Rmax + hh * 0.8], [thick, width - 2 * Rmin],
                           hh, 3, CurDens)
    rad.ObjDrwAtr(coil2, coilcolor)

    #Make container, set the colors and define symmetries
    g = rad.ObjCnt([gp, g3, g4, g5])
    rad.ObjDrwAtr(g, ironcolor)
    gd = rad.ObjCnt([g])

    rad.TrfZerPerp(gd, ct, [1, 0, 0])
    rad.TrfZerPerp(gd, ct, [0, 1, 0])

    t = rad.ObjCnt([gd, coil1, coil2])
    rad.TrfZerPara(t, ct, [0, cos(pi / Nn), sin(pi / Nn)])

    rad.TrfMlt(t, rad.TrfRot(ct, [1, 0, 0], 4 * pi / Nn), int(round(Nn / 2)))
    rad.MatApl(g, ironmat)
    rad.TrfOrnt(t, rad.TrfRot([0, 0, 0], [1, 0, 0], pi / Nn))

    return t