print(train.keras_model.summary()) # **2 #this will be an upper limit on vertices per batch verbosity = 2 import os samplepath = train.val_data.getSamplePath(train.val_data.samples[0]) callbacks = [] for i in range(10): plotoutdir = train.outputDir + "/event_" + str(i + 2) os.system('mkdir -p ' + plotoutdir) callbacks.append( plotEventDuringTraining(outputfile=plotoutdir + "/sn", samplefile=samplepath, after_n_batches=4000, batchsize=100000, on_epoch_end=False, use_event=2 + i)) from configSaver import copyModules copyModules(train.outputDir) from betaLosses import config as loss_config loss_config.energy_loss_weight = 0.0001 loss_config.use_energy_weights = False loss_config.q_min = 0.5 loss_config.no_beta_norm = False loss_config.potential_scaling = 1. loss_config.s_b = 1. loss_config.position_loss_weight = 0.00001
samplepath = train.val_data.getSamplePath(train.val_data.samples[0]) print("using sample for plotting ",samplepath) callbacks = [] import os publishpath = '[email protected]:/eos/home-j/jkiesele/www/HGCalML_trainings/'+os.path.basename(os.path.normpath(train.outputDir)) for i in range(6,10): ev = i plotoutdir = train.outputDir + "/event_" + str(ev) os.system('mkdir -p ' + plotoutdir) callbacks.append( plotEventDuringTraining( outputfile=plotoutdir + "/sn", samplefile=samplepath, after_n_batches=200, batchsize=100000, on_epoch_end=False, publish = publishpath+"_event_"+ str(ev), use_event=ev) ) model, history = train.trainModel(nepochs=1, run_eagerly=True, batchsize=nbatch, batchsize_use_sum_of_squares=False, checkperiod=1, # saves a checkpoint model every N epochs verbose=verbosity, backup_after_batches=100, additional_callbacks=callbacks+ [CyclicLR (base_lr = learningrate, max_lr = learningrate*5.,